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Abstract

Unmanned Underwater Vehicle (UUV) maneuvering simulators have severe limita-
tions on modeling UUV motion near a moving submarine because they are not capa-
ble of determining the complex, turbulent, hydrodynamic interactions in real time.
Potential flow solvers are typically fast enough, but they neglect viscosity which in-
troduces large inaccuracies that play a critical role in control. On the other hand,
Computational Fluid Dynamics (CFD) accurately models these hydrodynamic inter-
actions, but a simulation of a single UUV in one specific configuration typically takes
hours or days to complete. Therefore, it is not practical for real-time applications.
To bridge this gap, a machine learning framework based on actively sampled Gaus-
sian Process (GP) regression is developed to create a reduced-order model (ROM)
that predicts the hydrodynamic interactions in real time using a minimum number
of expensive simulations.

We show that the introduced active learning framework, called Non-Myopic Multi-
Fidelity (NMMF) active learning for GP regression, significantly and parsimoniously
accelerates the convergence of the surrogate model by combining the low cost of the
low-fidelity, potential flow simulations to explore the domain, as well as optimally se-
lected high-fidelity CFD simulations as training data to improve the model accuracy.
It is shown that the resulting GP regression model captures accurately and efficiently
the hydrodynamic interactions between the UUV and the moving submarine. Based
on the developed algorithms, we are able to define operating envelopes that outline
regions where the UUV safely overcomes the hydrodynamic interactions, as well as,
regions where the UUV is overpowered and collides with the submarine. This ap-
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proach also enables us to develop new autonomous protocols that compensate for the
hydrodynamic interactions, by adjusting the desired UUV heading and speed, which
enables the UUV to safely stay on the desired course. A sensitivity analysis confirms
the robustness of the presented control strategies. The developed ideas pave the way
for control algorithms in complex environments, such as turbulent boundary layers,
which were previously impossible to navigate in real-time.

Thesis Supervisor: Themistoklis P. Sapsis
Title: Professor
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SAND Stochastic Analysis and Nonlinear Dynamics.

SDV Swimmer Delivery Vehicle.

SST Shear-Stress Transport.

TCS Time Critical Strike.

US United States.

USN United States Navy.

UUV Unmanned Underwater Vehicle.

VPT Virginia Payload Tube.
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Nomenclature

𝐴 Wave Amplitude.

𝐵 UUV Buoyancy.

𝑐 Clearance Between Vehicles.

𝒟 Data Set.

𝐷𝑆𝑢𝑏 Submarine Diameter.

𝐷𝑈𝑈𝑉 UUV Diameter.

𝑑 Input Dimension of Surrogate Model.

𝑑𝑙𝑒𝑎𝑑 Lead Distance.

𝑑𝑜𝑓𝑓 Lead Offset for Modified Waypoints Behavior.

𝑑𝑝𝑒𝑟𝑝 Perpendicular Distance from Track-line.

𝐹𝑎 Hydrodynamic Force due to Added Mass.

𝐹𝐵 UUV Body Forces.

𝐹𝐶 UUV Control Forces.

𝐹𝑑 Hydrodynamic Force due to Damping.

𝐹𝐻𝑆 Hydrostatic Force.

𝐼 Moment of Inertia.

𝐾 Rolling Moment.

𝐾𝑑 Derivative Gain.

𝐾𝑖 Integral Gain.

𝐾𝑝 Proportional Gain.

𝐾𝑃𝑟𝑜𝑝 Propeller Torque.

𝐾𝑦𝑦(X*,X
′
*) Surrogate Predicted Covariance.
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𝑘 Wave Number.

𝑘(𝑥, 𝑥′) Gaussian Process Covariance Function or Kernel.

𝐿/𝐷𝑈𝑈𝑉 UUV Length-to-Diameter Ratio.

𝐿𝑆𝑢𝑏 Submarine Length.

𝐿𝑈𝑈𝑉 UUV Length.

𝑀 Pitching Moment.

M Inertial Matrix.

𝑀𝑎 Hydrodynamic Moment due to Added Mass.

𝑀𝑑 Hydrodynamic Moment due to Damping.

𝑚 Mass.

𝑚𝑖1𝑖2 Added Mass.

𝑁 Yawing Moment.

𝑁𝑠 Surrogate Model Yawing Moment.

𝑁 ′ Yawing Moment Coefficient.

𝑁 ′
𝑠 Surrogate Model Yawing Moment Coefficient.

𝑛 Number of Samples.

𝑃 Pressure.

𝑝 Roll Velocity.

𝑞 Pitch Velocity.

𝑞𝐼𝑀 Inter-Model Acquisition Function.

𝑅𝑈𝑈𝑉 UUV Radius.

𝑅𝐿𝑎𝑡 Latitudinal Separation Ratio.

𝑅𝐿𝑜𝑛𝑔 Longitudinal Separation Ratio.

𝑅𝑒 Reynolds Number.

𝑟 Yaw Velocity.

𝑈 Velocity.

𝑈𝑜𝑡 Overtaking Velocity.

𝑈𝑆𝑢𝑏 Submarine Velocity.

u Input Vector.

𝑢 Surge Velocity.
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𝑢𝑑 Desired UUV Speed.

𝑢𝑤 Wave Surge Velocity.

𝑣 Sway Velocity.

𝑣𝑐𝑜𝑚𝑝 Theoretical Compensated Sway Velocity.

𝑣𝑤 Wave Sway Velocity.

𝑊 UUV Weight.

𝑤 Heave Velocity.

𝑋 Surge Force.

X Inputs in Data Set.

X* Inputs where Predicted Mean/Variance are De-

sired.

𝑋𝑠 Surrogate Model Surge Force.

𝑋 ′ Surge Force Coefficient.

𝑋 ′
𝑠 Surrogate Model Surge Force Coefficient.

𝑋𝑃𝑟𝑜𝑝 Propeller Thrust.

𝑥 𝑥 Cartesian Coordinate.

𝑥* Optimal Sampling Location.

x State Vector.

xd Desired State Vector.

𝑥′𝑖 Optimal Sampling Location for Single Output.

𝑥𝑛 Input for Single Data Point in Data Set.

𝑌 Sway Force.

𝑌𝑠 Surrogate Model Sway Force.

𝑌 ′ Sway Force Coefficient.

𝑌 ′
𝑠 Surrogate Model Sway Force Coefficient.

𝑦 𝑦 Cartesian Coordinate.

y Outputs in Data Set.

𝑦(X*) Surrogate Predicted Mean.

𝑦* Output for Optimal Sampling Location.

𝑦+ Non-dimensional Wall Distance.
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𝑦𝑛 Output for Single Data Point in Data Set.

𝑍 Heave Force.

𝑧 𝑧 Cartesian Coordinate.

𝛼 Modified Waypoints Behavior Parameter.

𝛽 Angle Between Submarine Velocity and Track-line.

𝛾 𝑁𝑢𝑣 Compensation Parameter.

∆𝛿𝑒𝑞,𝑁 Yaw Equivalent Rudder Angle Difference.

∆𝛿𝑒𝑞,𝑌 Sway Equivalent Rudder Angle Difference.

𝛿 Prandtl Turbulent Boundary Layer Thickness.

𝛿𝑟 Rudder Angles.

𝜃 Pitch Angle.

𝜆 Wavelength.

𝜇 Fluid Dynamic Viscosity.

𝜇(𝑥) Gaussian Process Mean.

𝜈 Fluid Kinematic Viscosity.

𝜌 Fluid Density.

𝜎 Surrogate Model Error.

𝜎2
𝑛 Training Data Aleatoric Uncertainty.

𝜎2
𝑤 Weighted Variance.

𝜎2
𝑦,𝑖 Measured Variance for Each Set of Output Data.

𝜏 Fluid Stress Tensor.

𝜏𝑋𝑃𝑟𝑜𝑝
Change in Propeller Thrust.

𝜏𝛿𝑟 Change in Rudder Angle.

𝜑 Roll Angle.

𝜓 Heading Angle or Yaw Angle.

𝜓𝑑 Desired Heading Angle.

𝜓𝑑,𝑐𝑜𝑚𝑝 𝑁𝑢𝑣 Compensated Desired Heading Angle.

𝜔 Wave Angular Frequency.

%𝑋𝑝𝑟𝑜𝑝 Percent of Propulsive Force.
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Chapter 1

Introduction

1.1 Motivation

While the United States Navy (USN) has developed a strong arsenal of tools to model

the hydrodynamic forces and moments of different vehicles in different conditions,

they do not have a means of performing real-time modeling of the forces and moments

that an Unmanned Underwater Vehicle (UUV) experiences when in close proximity

to a moving submarine as a result of the interactions between their wakes and flow

fields. One goal of this thesis is to develop a method of modeling the hydrodynamic

interaction forces and moments between these two submerged moving bodies in order

to incorporate these forces and moments into a UUV maneuvering simulator. The

real-time modeling of these forces and moments at various positions, angles, speeds,

and vehicle sizes is vital to simulate the motion of the two submerged bodies in close

proximity. This thesis provides a method to create a reduced order surrogate model

of these hydrodynamic interaction forces and moments, which enables the simulation

of a UUV maneuvering in close proximity to a submarine. This further enables the

development of safe operating envelopes and new autonomous behaviors that allow

the UUV to overcome these unwanted hydrodynamic interactions.

In 2000, the USN released its Unmanned Undersea Vehicle Master Plan and provided
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updates in 2004 and 2011. This plan stressed the importance of UUVs and their capa-

bility to continually demonstrate new possibilities that can assist our naval forces in

maintaining maritime superiority around the world [1]. UUVs are a broad category of

vehicles that include both Remotely Operated Vehicles (ROVs) and Autonomous Un-

derwater Vehicles (AUVs). Because of the limited use cases of ROVs, UUVs are often

simply referred to as AUVs. UUVs are being incorporated into the fleet because they

have potential capability in nine different mission areas (or UUV “Sub-Pillars”) in-

cluding Intelligence, Surveillance, and Reconnaissance (ISR), Mine Countermeasures

(MCM), Anti-Submarine Warfare (ASW), Inspection/Identification (ID), Oceanog-

raphy, Communication/Navigation Network Nodes (CN3), Payload Delivery, Infor-

mation Operations (IO), and Time Critical Strike (TCS) [1].

Due to their ability to avoid detection, submarines provide an opportune platform

for the launch and recovery (L&R) of UUVs. Because of their large draft and non-

expendable nature, submarines cannot operate in littoral waters near an enemy coast-

line as well as UUVs. By integrating submarines and UUVs, the UUVs can take on

certain mission sets of submarines and act as force multipliers and risk reducers to

manned platforms, especially in littoral waters [1]. The expertise of the submarine

crew involving underwater and covert operations is valuable to the deployment of

UUVs. Submarine operational time is in high demand and enabling UUVs to accom-

plish certain submarine tasks will provide the submarine with flexibility and time to

perform other tasks or mission sets [1]. In order to integrate submarines and UUVs,

many different L&R systems have been explored to provide this new capability.

UUVs are available in four different classes. These classes are outlined in the UUV

Master Plan and further expanded upon by the Unmanned Maritime Systems Pro-

gram Office (PMS 406) [1, 2]. Table 1.1 describes the different features of these

different UUV classes.
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Table 1.1: UUV classification based on vehicle size [1, 2].

UUV Master Plan Class PMS 406 Class Diameter (in) Weight (lbs)

Man-Portable Small 3 to 10 25 to 100

Light Weight Vehicle (LWV) Medium 10 to 12.75 ∼500

Heavy Weight Vehicle (HWV) Medium 12.75 to 21 ∼3000

Large Large 21 to 84 ∼20,000

N/A Extra Large >84 N/A

Different classes of UUV are capable of performing different mission sets. Allowing

submarines to perform L&R operations for different size UUVs enables them to ac-

complish a wider variety of mission sets. Table 1.2 illustrates the potential mission

sets that each UUV class is capable of performing. These missions are prioritized

based on importance to the USN.

Table 1.2: Different missions of different size UUVs [1].

Mission Priority Man-Portable LWV HWV Large
ISR 1 Special Purpose Harbor Tactical Persistent

MCM 2

(Very) Shallow
Water, Search,
Classify, Map,
Neutralizers

Operating
Area

Clearance

Clandestine
Reconnais-

sance
-

ASW 3 - - - Hold-at-Risk

Inspection
/ ID 4

Homeland
Defense/Anti-

Terrorism Force
Protection

- - -

Ocean-
ography 5 - Special

Purpose
Littoral
Access Long Range

CN3 6

Very Shallow
Water/Special

Operations
Forces

Mobile CN3 - -
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Payload
Delivery 7 - - -

Special
Operations

Forces, ASW,
MCM, TCS

IO 8 - Network
Attack

Submarine
Decoy -

TCS 9 - - - Deliver
Ordinance

Table 1.2 illustrates how there is a very high priority for all different sizes of UUVs

to be able to be incorporated into the submarine fleet. These different size UUVs

will act as force multipliers by taking on tasks that the high-value submarine asset

would have to perform. If UUVs can be successfully integrated into the submarine

fleet, submarines will be able to accomplish many more tasks by outsourcing them to

the different size UUVs. Because UUVs are a very small fraction of the cost of the

high-value submarine, this provides major cost saving advantages for the completion

of a specified task. Additionally, UUVs operate as risk reducers. Placing a high value

submarine asset in a dangerous situation, like operating in very shallow waters or

close to obstacles, is very risky. However, placing an inexpensive UUV in the same

scenario reduces the risk of losing a high value asset or the personnel on the submarine.

Therefore, UUVs provide a means of transferring the risk to an expendable vehicle,

which reduces the overall risk of a mission.

To successfully launch and recover UUVs from submarines, these two vehicles will be

operating in very close proximity to each other. The flow around the submarine and

UUV in close proximity will be different than if the two vehicles are far apart. The

wake, pressure field, and boundary layer created by the submarine will interact with

the UUV as illustrated in the figure below.
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Figure 1-1: Demonstration of the impact the submarine has on flow. As a UUV
operates in close proximity to the submarine, this wake and flow field influences the
operation of the UUV [3].

The interactions between the submarine and UUV create forces and moments which

may result in uncontrollable vehicle motions and create a challenge for the precise

vehicle control required for the L&R of UUVs [4]. Because the UUV is much smaller

than the submarine, the UUV is affected much more by these unwanted hydrodynamic

interaction forces and moments. Understanding the hydrodynamic interactions be-

tween these two vehicles enables the Navy to better simulate UUV L&R approaches,

develop better UUV autonomy and control systems, and provide additional insight

when designing different UUV L&R architectures. Many different UUV L&R systems

have been explored throughout the literature. Each technique has its advantages and

disadvantages. Some of these most popular system concepts include L&R via [3, 4,

5, 6]:

• Enlarged Torpedo Tubes

• Existing Missile Tubes

• Dry Casing Mounted Hanger

• Wet Casing Mounted Hangar
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• AUV Bespoke Multiple Hangars

• Docking Envelopes

• Mechanically Actuated Submarine

These many different potential L&R systems each require the UUV to be in a unique

position. Understanding the hydrodynamic interactions of the UUV in any location

with respect to the submarine is very valuable because it allows decision makers to

assess the feasibility and risk of each L&R system.

1.2 Hydrodynamics

While the hydrodynamic forces acting on a single moving submarine or UUV are

well known, modeling the effects of the forces and moments due to the hydrodynamic

interactions between a submarine and UUV operating in close proximity is an open

area of research. As a UUV travels close to a moving submarine, the pressure field and

wake around the submarine cause the UUV to experience unwanted external forces

and moments which make the UUV have undesirable motions and may even cause

the UUV to become uncontrollable [3]. This could result in L&R failure or even a

collision between the two vessels. These external forces and moments acting on the

vessels operating in close proximity are known as hydrodynamic interactions.

In order to better enable L&R of UUVs from submarines, one objective of this research

is to determine the hydrodynamic interaction forces and moments in real time to

enable the simulation of a UUV maneuvering in close proximity to a submarine.

UUV control and autonomy systems respond to perturbations from unknown external

disturbances in fractions of a second in order to stay on course. This means that the

hydrodynamic interaction forces and moments need to be determined in real time in

order to be used to simulate their impact on UUV maneuvering.

Many methods have been developed to predict the hydrodynamic forces acting on

an object. There are many means by which the hydrodynamic interactions may be
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predicted, each with its own advantages and disadvantages. These methods include

experimental fluid dynamics (EFD) using tow tanks, empirical or semi-empirical para-

metric models fit to validated data, potential flow modeling using simplified physics,

and computational fluid dynamics (CFD) approaches to solve the Navier-Stokes equa-

tions.

1.2.1 Experimental Fluid Dynamics

One potential approach to determine the hydrodynamic interactions is to use experi-

mental fluid dynamics to determine the forces and moments of a UUV interacting with

a moving submarine. Because this approach collects force data from physical models,

usually in a tow tank, the results are generally considered valid. They often eliminate

errors in computational models that exist from not capturing the real complexity of

the physical world [7]. However, performing physical experiments is both challenging

and expensive. In order to experimentally determine the forces and moments experi-

enced by the UUV near a submarine, the methods used on surface ships need to be

upgraded to capture the six degree-of-freedom (DOF) motion capability of submerged

vehicles [4, 8]. When the effects on multiple vehicles are being studied, the required

instrumentation and infrastructure increases significantly. Additionally, the facilities

required to capture the range of variables studied in this research create a large ob-

stacle. In order to have the experimental model be unaffected by the restricted water

effect, the model needs to be small enough to fit in a tow tank and allow water to flow

around it without having changes in the pressure and velocity field around the hull

due to the tow tank walls and bottom [9, 10, 11]. However, the model needs to be as

large as possible to better capture the full-scale physics and reduce EFD uncertainty.

For straight-line tests, the ratio of the model length to tank width ratio should be

about 0.47 [11]. Arguments have been made this is too large for submerged vehicles

due to the proximity to the bottom of the tank, but this number is used to illustrate

the problem [9]. Models can be slightly bigger, but corrections need to be made and

errors can be introduced due to blockage effects [10]. According to this model length

to tank width ratio, a 2.43 meter (8 foot) wide tow tank should have a model roughly
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1.15 meters long. If the submarine being modeled is an Ohio class submarine and the

UUV being modeled is a 3-inch man-portable UUV, then the submarine model would

need to be about 8.6 cm in diameter. To maintain the same diameter ratio between

the submarine and UUV of 168, the UUV model would need to be about 0.5 mm in

diameter [12]. Collecting any usable data with a UUV model this small is completely

unrealistic. Even if a medium or large UUV is modeled, rather than a man-portable

UUV, this would still require the model diameters to be 3.6 mm and 14 mm respec-

tively. These represent submarine-to-UUV diameter ratios of 24 and 6 respectively.

These ratios produce model sizes that are too small to produce any useful data. In a

novel study that performed EFD to validate CFD studies of the hydrodynamic inter-

actions between submarines and UUVs, the diameter ratio between submarine and

UUV is limited to 2.239 due to the previously discussed limitations on the model sizes

with respect to the size of the tow tank facility [3]. Even at this extreme diameter

ratio, blockage effects are still experienced in the EFD results. This is why two tank

facilities often drastically limit the range of hydrodynamic interactions that can be

studied based on submarine and UUV sizes.

1.2.2 Parametric Models

Several empirical parametric models have been made in an attempt to predict the

hydrodynamic interactions between a submarine and UUV. Many different methods

have been used to create these parametric models. One study approaches this problem

by creating a partially-fixed parametric model of the hydrodynamic interaction forces

and moments based on both potential theory and experimentally derived models

available in the literature [13]. Much of the data is taken from the better-known

interactions between surface ships and applied to submarines and UUVs. Because

the model is partially created from experimental models and validated against other

data within these models, it is considered accurate for its intended use. However,

due to the very limited nature of the available experimental models, including only

modeling very large-sized UUV at zero-degree heading angles, the results are limited

to specific scenarios. The model does not have the broad level applicability to create
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maneuvering simulations of interest to the Navy.

Another study modeled Phoenix Autonomous Underwater Vehicle (AUV) docking

into a retractable recovery tube on a Los Angeles submarine [5]. This study as-

sumes that the submarine is large enough with respect to the UUV to appear as a

flat plate. The approach determines the parabolically shaped boundary layer along

the submarine hull using Prandtl’s boundary layer theory over a flat plate. Within

this boundary layer, the UUV experiences a reduction in fluid velocity caused by the

viscous effects of the fluid acting on the hull. While this study is one of the first

to model the UUV maneuverability near a moving submarine through real-time flow

disturbances from the submarine, the simplicity of the method fails to capture the

complexity needed to more accurately predict the behavior of the UUV. For example,

this approach assumes perturbations in the flow field caused by the AUV itself are

negligible. This is sometimes called the "one-way" assumption because the subma-

rine disturbs the flow field but not the AUV. This "one-way" assumption presents

significant errors when the AUV is close enough to the UUV that its own hull causes

blockage effects of the flow between the vehicles. This approach also fails to account

for areas near the bow and stern of the submarine where hull curvature exists.

1.2.3 Potential Flow

Potential flow is an approach that simplifies the governing fluid equations by assum-

ing that the fluid is incompressible, inviscid, and irrotational. These simplifications

enable solving the governing equations in real-time. However, neglecting fluid vis-

cosity results in no viscous drag or flow separation along the UUVs. This results in

the prediction of zero drag for a UUV moving at a constant speed through a fluid.

This result is obviously incorrect and this contradiction is known as the d’Alembert

paradox [14, 15]. While this approach has known limitations, there is still useful in-

formation that can be gathered by studying the hydrodynamic interactions between

two vehicles using potential flow.

One study examined using potential flow methods to solve real-time hydrodynamic
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interactions between a surface ship and a tug boat for the use in ship maneuver-

ing simulators. Some of the limitations of the potential flow methods are able to

be overcoming using build-in parametric models that predict viscous drag on the

tug. However, the study found that the potential flow solver is limited in its abil-

ity to predict real-time hydrodynamic interactions within ship handling simulators

because it fails to produce accurate results when the vehicle is at non-zero heading

angles [16].

1.2.4 Computational Fluid Dynamics

Computational Fluid Dynamics is a method of simultaneously solving the Navier-

Stokes and continuity equations in order to fully resolve fluid flow and predict hydro-

dynamic forces. Analytical solutions to the Navier-Stokes equations are very limited.

In certain geometries and applications, this set of coupled non-linear partial differen-

tial equations can be simplified and used to get exact solutions. However, a general

smooth solution to the three-dimensional incompressible Navier-Stokes equations does

not exist and remains one of the seven most important open problems in mathematics

[17]. The geometry of this specific problem is too complicated to reach an analyt-

ical solution to the Navier-Stokes equations so CFD provides a good approach to

numerically solving or approximating a solution to these governing equations.

The Navier-Stokes and continuity equations can be directly numerically solved us-

ing an approach called a direct numerical solution (DNS). However, in order to fully

resolve the smallest scale eddies that arise due to turbulence, the resolution of the

solution space has to be so fine that even supercomputers are only able to solve very

simple geometries. For this reason, DNS is a good research tool for validating solu-

tions, but not good as a means to solve the Navier-Stokes equations for engineering

problems and exploring design spaces [18]. To overcome this limitation, several turbu-

lence models have been developed which produce approximate solutions much faster

than DNS methods. However, even using these turbulence models, simulations still

often take hours or days to complete.
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One study uses CFD to investigate the hydrodynamic interactions of a UUV at various

positions relative to the sail of a moving submarine in order to determine which

locations would allow for the best L&R of a UUV [19]. The study found that in the

forward region of the submarine, the hydrodynamic interactions cause the UUV to

be repelled and the magnitude of the force increased as the vehicles moved closer

together. When the UUV is parallel and adjacent to the sail or cylindrical body, the

UUV experiences attraction forces between the two vessels. This is caused by the

Bernoulli effect of the flow velocity increase between the submarine and UUV. The

study also found that vortices are generated by the sail and cause fluctuations in the

hydrodynamic forces. Since the scope of the study is narrow in the locations and

vessel diameters that it investigated, these results would need to be greatly expanded

to develop usable force maps. This study also does not solve the problem of computing

the hydrodynamic interactions in real time.

A pioneering study initiated and partially funded by the Defense, Science and Tech-

nology Organization (DSTO) and the National Centre for Maritime Engineering and

Hydrodynamics (NCMEH) at the Australian Maritime College (AMC) was able to

make great progress exploring the hydrodynamic interactions between a UUV and

submarine [3]. The investigation examined hydrodynamic interactions of an unap-

pended UUV based on the relative speed, longitudinal position, lateral position, and

size difference with respect to an unappended submarine. The work involved the

development of CFD models to simulate the hydrodynamic interactions and map

the resulting forces and moments. This study also conducted tow tank experiments

with two submerged bodies and used the results to validate its computational mod-

els. While this examination is much more extensive than previous studies, different

length-to-diameter ratios and different heading angles need to be further examined to

fully understand the effects of the hydrodynamic interactions to enable the simulation

of the maneuvering UUV in close proximity to the submarine.

While each of these approaches has its own advantages and disadvantages, none of

them is capable of accurately solving the hydrodynamic interactions between a sub-
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marine and UUV in real time. Without real-time modeling of the hydrodynamic

interactions, these forces and moments cannot be incorporated into UUV maneuver-

ing simulators to determine the impact of the hydrodynamic interactions. As such,

this research takes a new approach using machine learning to bridge this gap by de-

veloping a surrogate model trained on accurate CFD data capable of computing the

hydrodynamic interactions in real time. This surrogate model may be incorporated

into UUV maneuvering simulators in order to determine the impact of the hydrody-

namic interactions and develop strategies to overcome them.

1.3 Machine Learning

In order to simulate the complex and diverse maneuverability space of a UUV in

close proximity to a submarine, the forces and moments due to their hydrodynamic

interactions need to be known at various positions, orientations, velocities, subma-

rine to UUV diameter ratios, and UUV length to diameter ratios. Changing one

of these variables results in different hydrodynamic interaction forces and moments

experienced by the UUV. As such, the real-time determination of the hydrodynamic

interactions based on these variables is essential to simulate UUV autonomy and

maneuvering when operating near a moving submarine. Because traditional hydro-

dynamic techniques are not capable of being solved in real time, machine learning

provides a possible means of creating a surrogate model capable of solving the hy-

drodynamic interactions in real time. Training this surrogate model on data gath-

ered from traditional validated hydrodynamics techniques enables the surrogate to

capture the accuracy of the underlying technique while drastically reducing the com-

putational cost to predict the hydrodynamic interaction forces and moments for any

UUV state.

Machine learning is a vast area of study that explores many different problems or ap-

plications. This particular problem of mapping desired outputs to their inputs based

on data provided by a supervisor is a type of supervised machine learning known as

regression. Supervised machine learning is when the output data is known and pro-
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vided by a supervisor. In this case, the known outputs, which are the hydrodynamic

interactions, are provided using traditional hydrodynamic techniques. Regression is

a process for mapping and predicting the output based on the model inputs.

There are many supervised machine learning regression methods that are potential

candidates for this study. A few popular regression techniques include linear and

non-linear regression, neural networks, neural operators, and Gaussian Process (GP)

regression. Each of these approaches has its advantages and disadvantages. Linear

regression is easy to implement but is unable to accurately predict non-linear outputs.

Non-linear regression is also relatively easy to implement, but the output is modeled as

a function of the input using basis functions. This is useful if the shape of the output

is known so that the basis functions can be selected to accurately map the output.

When mapping the hydrodynamic interaction forces and moments to the state of

the UUV around the submarine, the shape of the output function is unknown. This

makes using linear and non-linear regression unrealistic.

Neural networks are capable of mapping outputs with a non-linear and unknown

shape. However, these techniques often employ several hidden layers of a large number

of neurons combined with activation functions in order to create non-linear outputs.

Because of this multi-layer and multi-neuron architecture, these approaches often take

a large amount of training data in order to determine all of the weights and become

accurate. Neural operators employ similar multi-layer strategies of operators, which

also requires large amounts of training data. Because of the high computational or

experimental cost to determine the hydrodynamic interactions of a single UUV at

one state, these approaches are unlikely to be successful without generating training

data beyond the resources of this research.

However, GP regression is a prime candidate to map the hydrodynamic interactions

to the state of the UUV. GP regression can be used to simulate a Bayesian linear

regression model with an infinite number of basis functions [20]. Because an infinite

number of these basis functions can determine the form of any sufficiently smooth
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output function, this method is well suited for this study with an unknown shape

for the output functions. Additionally, because GP regression uses a kernel rather

than a large number of neurons and layers, this approach often requires a smaller

amount of training data than other machine learning regression methods to accurately

map inputs to outputs [20]. GP regression also has inherently robust uncertainty

quantification that is useful in assessing the accuracy of the surrogate model.

There is a wide range of UUV states for which the hydrodynamic interactions can be

determined. Because determining the hydrodynamic interactions at a specific UUV

state is expensive, the UUV state should be selected to ensure that the data provides

the most benefit to the machine learning surrogate model. Carefully selecting which

experiments to run in order to extract the largest amount of information is known as

the Design of Experiments (DOE). This field of study originated in agriculture and

deals with planning, conducting, and analyzing the input and output variables of an

experiment [21]. DOE is conducted before an experiment is performed to determine

how to best use the valuable experimental resources. This practice reduces the number

of experiments needed to create a statistically valid model. Optimal experimental

design (OED) is performed by selecting the most efficient set of experiments needed

to accurately estimate the output.

In the OED field, the practice of performing an experiment for every possible combi-

nation of discrete input variables is called a full factorial design [21, 22]. This method

provides the most comprehensive exploration of the design space but is often way too

resource intensive to be considered feasible, as is the case with this research. There

are many approaches to reduce the number of experiments needed to adequately ex-

plore the design space, but they are generally narrowed into two categories: fractional

factorial design and sequential design [22]. The fractional factorial design establishes

the full set of experiments that will be performed before any single experiment is per-

formed or results are obtained. This approach is well suited to map a function within

a given range of input variables and is a good method to comprehensively explore a

design space. However, a disadvantage of the fractional factorial design is that it may
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spend resources exploring regions of the design space that may be of no interest or

well modeled. Eliminating unimportant areas of the design space and adjusting the

design to focus on areas that better improve the surrogate provides a more efficient

means of conducting the experiments. This sequential design type of OED is often

referred to as active learning in the machine learning field [23, 24, 25].

1.3.1 Active Learning

For many problems, like the one considered for modeling the UUV hydrodynamic

interactions, the cost of obtaining accurate training data is very large. Active learning

consults the surrogate after every experiment is performed to try to find the next

new experiment that provides the most benefit. In order to use active learning,

the surrogate model is retrained after every new experiment is conducted. This

enables the surrogate to update after every experiment and identify the next optimal

experiment to run. The next optimal experiment is found using an equation known

as an acquisition function [23, 24].

There are many known acquisition functions that depend on the quantity of interest

[25, 26]. While many of these acquisition functions apply to this research, there is

no specific acquisition function that is well-suited to combine the available different

hydrodynamic methods for multiple forces and moments. One goal of this research

is to explore various means of utilizing all available hydrodynamic resources to pro-

vide an acquisition function capable of producing an accurate and low-cost surrogate

model.

1.4 Thesis Objective

In order to enable the launch and recovery of UUVs from submarines, a UUV needs to

be able to overcome the hydrodynamic interaction forces and moments between the

two vehicles [3]. Because of its accuracy and ease of implementation, CFD is often

used to predict these hydrodynamic interactions. While most CFD simulations take

37



hours to days to complete, a UUV control system provides updates multiple times a

second to its desired speed and heading based on its current state in order to maintain

the desired trajectory. As such, the hydrodynamic interaction forces and moments

need to be determined in real time in order to accurately simulate UUV maneuvering

around a moving submarine. This thesis intends to bridge this technological gap by

creating a surrogate with the accuracy of CFD and the necessary speed to be solved

in real time. This surrogate can be used to simulate UUV maneuvering around the

submarine as well as develop new autonomous behaviors capable of overcoming these

unwanted hydrodynamic interactions.

1.4.1 Thesis Problem Statement

To develop a methodology for simulating UUV maneuvering around a moving sub-

marine by accurately predicting the complex hydrodynamic interactions in real time

using novel active sampling machine learning approaches as a surrogate model.

1.4.2 List of Contributions

Provided is a list of the contributions made by this thesis to overcome the technical

gap summarized in the thesis problem statement.

• A generalizable method of actively sampling data points across multi-fidelity GP

regression framework using a new Non-Myopic Multi-Fidelity active learning

algorithm. This includes a new method of acquiring optimal sampling locations

between multi-fidelity frameworks. This approach includes the formulation of

the inter-model acquisition function and is capable of being used in a variety of

other applications. This method has been submitted for publication.

• A methodology of implementing a surrogate model into a UUV motion simulator

in order to study the impact of the hydrodynamic interactions on UUV motion.

This method has been submitted for publication. This includes:

– Methodology for the development of a surrogate model capable of predict-
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ing the hydrodynamic interactions between a UUV and a submarine in

real time.

– Methodology for integrating the surrogate model into the UUV equations

of motion.

– Development of force and moment maps using the surrogate model to

better quantify the unwanted hydrodynamic interactions.

– Development of operating envelopes that outline regions where the UUV

safely overcomes the hydrodynamic interactions and where the UUV is

overpowered and collides with the submarine.

• A methodology of implementing a surrogate model into a UUV autonomy archi-

tecture in order to develop new autonomous behaviors capable of overcoming

unwanted hydrodynamic interactions. This method has been submitted for

publication. This includes:

– Method for integrating the surrogate model into the autonomy architecture

of the UUV.

– Method for adjusting the UUV heading to account for the moving subma-

rine reference frame. This is known as the modified waypoints behavior.

– Method for adjusting the UUV heading to account for the yaw moment

hydrodynamic interaction. This is known as the 𝑁𝑢𝑣 compensating behav-

ior.

1.5 Thesis Outline

This thesis chapter introduces the motivation, problem, and approach to bridge the

technological gap using a methodology of implementing a surrogate model into a UUV

motion simulator in order to study the impact of the hydrodynamic interactions on

UUV motion.
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The remaining chapters are outlined below:

Chapter 2: Non-Myopic Multi-Fidelity Active Learning

Describes the new active learning method that utilizes the low cost of the low fidelity

potential flow model to explore the design space while leveraging the high accuracy

of the high fidelity CFD simulator to create a surrogate model. This also includes

the method of active learning that accounts for multiple outputs.

Chapter 3: Computational Modeling of Multiple Body Hydrodynamic In-

teractions

Outlines the methods and procedures of implementing potential flow and CFD sim-

ulators to predict the hydrodynamic interactions. This includes validation of these

methods against tow tank experiments.

Chapter 4: Reduced Order Modeling of Hydrodynamic Interactions be-

tween a UUV and Submarine

Describes the approach of designing and developing the hydrodynamic interaction

surrogate model. The surrogate is validated real-world results.

Chapter 5: Simulating UUV Motion with Hydrodynamic Interactions

Details the method of incorporating the hydrodynamic interaction surrogate model

into the equations of motion of the UUV maneuvering simulator. The UUV simulator

is validated and safe operating envelopes are developed for various scenarios.

Chapter 6: Developing Autonomous Behaviors to Overcome Hydrody-

namic Interactions

Describes the method of incorporating the hydrodynamic interaction surrogate model

into the autonomous behavior architecture of the UUV simulator. This method is

used to develop new autonomous behaviors better capable of overcoming these un-

wanted hydrodynamic interactions.

Chapter 7: Conclusion

Summarizes the thesis and research contributions as well as provides suggestions for

future work.

40



Chapter 2

Non-Myopic Multi-Fidelity Active

Learning

2.1 Introduction

In order to enable the launch and recovery of UUVs from submarines, a UUV needs

to be able to overcome the hydrodynamic interaction forces and moments between

the two vehicles [3]. These hydrodynamic interactions are often predicted using high

fidelity CFD modeling due to its high accuracy. While most CFD simulations take

hours to days to complete, a UUV control system needs to respond to perturbations

and changes to the vehicle position and heading within fractions of a second in order

to maintain the desired trajectory. As such, the UUV needs to determine the hydro-

dynamic interaction forces and moments in real time based on its position, heading,

speed, and proximity to its desired path.

Modeling forces and moments on a UUV can be performed with a variety of com-

putational models that resolve the governing fluid equations. These range from low

fidelity and low cost models to more expensive and more accurate models. Specifi-

cally, low fidelity models, such as potential flow solvers use simplified physics which

neglects viscosity, skin friction, boundary layer development, and flow separation.
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This simplified approach leads to the d’Alembert paradox, which infamously pre-

dicts zero drag on a UUV moving at constant velocity and suggests that the body

will perpetually move forward [14, 15]. These low fidelity solvers are often improved

and supplemented with simple parametric models to help overcome these weaknesses.

They also often have the capability to be solved in real time [27]. However, due

to these shortcomings, potential flow solvers ultimately lack the accuracy needed to

model the complex real world hydrodynamic interactions to enable UUV launch and

recovery operations. This can be achieved by CFD solvers that rigorously model all

the important fluid dynamics phenomena, but they have significant computational

cost. Because the required accuracy of the CFD is not capable of being delivered in

real time, a surrogate model is needed that is capable of being implemented in real

time and has the accuracy of the CFD.

A typical approach for building a surrogate model is to collect high fidelity data from

expensive and highly accurate CFD solvers and apply reduced order modeling ideas.

However, the computational cost of CFD can be prohibitive, given that the parameter

space for a UUV is significantly large. For such a case, an alternative is to combine a

few, carefully selected high fidelity simulations from a CFD model with plenty of low

fidelity computations from a potential flow solver. Integrating various fidelity models

into one surrogate is known as multi-fidelity modeling [28, 29]. By leveraging data

from a lower cost and less accurate model with data from a high fidelity model, the

accuracy of the surrogate model can be improved without the need for an excessive

number of high fidelity simulations. This results in a significant reduction of the

computational cost of the surrogate model without sacrificing accuracy.

An important question for developing accurate surrogate models is the selection of

the most informative training data, i.e. what CFD simulations one should perform

to get the most important information. This can be achieved by employing active

learning, a type of machine learning data sampling method in which the algorithm is

able to determine the optimal set of input parameters for which the next simulation

should be performed [23, 24, 25]. Typical active learning algorithms are characterized
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by myopia, or nearsightedness, which is a condition in which the lack of foresight can

inhibit the ability of a sampling algorithm to select the optimal sampling location for

the surrogate model [26, 30]. For example, a game exists where an unknown random

number is selected between 0 and 100. The object of the game is to minimize the

value between a number chosen by the participant and the unknown random number.

In this instance, the optimal number to select would be 50, halfway between the two

endpoints. This ensures that the maximum error between any random number and the

selected value is 50. Now assume the participant is allowed to select a second number.

Once 50 is selected, the next optimal value would be either 25 or 75. However, neither

of these two options reduces the maximum error because there is still the potential

to be off by 50. This problem exists because of myopia. Originally, the participant is

only considering selecting one single number. If the selection method is non-myopic,

there are different optimal values chosen. By knowing beforehand that two selections

would be made, the optimal selections would be at 25 and 75. By selecting these

two points, the maximum value between any random number and one of the selected

values would be 25. This illustrates how having the foresight of knowing about future

sampling characteristics provides a different set of optimal sampling locations.

This thesis introduces the use of a non-myopic multi-fidelity (NMMF) active learning

Gaussian Process (GP) regression algorithm for reduced order modeling and compares

it with standard myopic active learning techniques. A review of Gaussian process

regression, multi-fidelity modeling, and active learning in a myopic and non-myopic

setup is outlined. The formulation and implementation of the NMMF method is

detailed, including the its relative advantages in the context of standard benchmark

functions and prototype problems for scalar and vector outputs. The performance of

the NMMF active learning algorithm is also examined in the context of reduced order

modeling for UUV and submarine hydrodynamic interactions.
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2.2 Background

2.2.1 Gaussian Process Regression

The purpose of GP regression is to develop a surrogate or reduced order model (ROM)

that is capable of predicting the value of dependent variables based on the input

of independent variables. However, in contrast to typical regression methods, GP

provides rigorous estimates for the epistemic uncertainty of the derived model, i.e.

errors due to lack of data. The GP regression model can be expressed as a random

function,

𝑦 = 𝑓(𝑥) + 𝜖 (2.1)

where 𝑥 ∈ R𝑑, 𝜖 ∼ 𝒩 (0, 𝜎2) represents the noise of the model. The random function

𝑓 follows a Gaussian distribution with prescribed mean and covariance function such

that [20]:

𝑓(𝑥) ∼ 𝒢𝒫(𝜇(𝑥), 𝑘(𝑥, 𝑥′)), (2.2)

where 𝜇(𝑥) is the mean and 𝑘(𝑥, 𝑥′) the covariance as shown in the following equa-

tions.

𝜇(𝑥) = E[𝑓(𝑥)] (2.3)

𝑘(𝑥, 𝑥′) = E[(𝑓(𝑥)− 𝜇(𝑥))(𝑓(𝑥′)− 𝜇(𝑥′))] (2.4)

There are many different covariance functions (or kernels) that are often used in GP

models. Some of the more popular kernels include the white noise kernel, squared

exponential kernel, rational quadratic kernel, and the periodic kernel [31]. Rather
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than explore the impact of these different kernels, this thesis uses the following popular

radial basis function (RBF) kernel with automatic relevance determination:

𝑘(𝑥, 𝑥′) = exp

(︂
−(𝑥− 𝑥′)𝑇𝜆−1(𝑥− 𝑥′)

2

)︂
(2.5)

where 𝜆 is the diagonal matrix containing the length scales of each input dimension.

This kernel is selected because it simulates a Bayesian linear regression model with

an infinite number of basis functions. In other words, this kernel can be formed from

a linear combination of an infinite number of Gaussian-shaped basis functions [20].

Because an infinite number of these basis functions can determine the form of any

sufficiently smooth output function, this method is well suited for this study with an

unknown form for the different output functions. Automatic relevance determination

is used because it enables the GP regression kernel to have different length scales for

each input dimension.

GP regression is ultimately used to calculate the predicted mean 𝑦(X*) and covariance

𝐾𝑦𝑦(X*,X
′
*) from a set of input-output data pairs. In particular, the model is trained

with a data set 𝒟 ={𝑥𝑖, 𝑦𝑖}𝑛𝑖=1, where 𝑛 is the number of samples. This data set 𝒟

is also categorized into inputs and outputs denoted as X = [𝑥1, ..., 𝑥𝑛] ∈ R𝑑×𝑛 and

y = [𝑦1, ..., 𝑦𝑛] ∈ R𝑛 where the 𝑑 represents the dimension of the input domain.

Likewise, X* = [𝑥*1, ..., 𝑥*𝑚] ∈ R𝑑×𝑚, is a set of 𝑚 locations within the 𝑑−dimension

domain for which a prediction is desired. Equations (2.6) and (2.7) determine the

predicted mean and covariance at a set of points X* [20]:

𝑦(X*) = 𝐾(X*,X)[𝐾(X,X) + 𝜎2
𝑛I]

−1y (2.6)

𝐾𝑦𝑦(X*,X
′
*) = 𝐾(X*,X

′
*)−𝐾(X*,X)[𝐾(X,X) + 𝜎2

𝑛I]
−1𝐾(X,X′

*) (2.7)

The term 𝜎2
𝑛 represents the aleatoric uncertainty in the training samples. This is

a hyperparameter that is optimized using gradient descent methods to improve the
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predictive capabilities of the GP regression [20]. Additionally, it helps ensure the

matrix in brackets in equations (2.6) and (2.7) is well conditioned.

2.2.2 Active Learning

For many problems, like the one considered for modeling the UUV hydrodynamic

interactions, the cost of obtaining accurate training data for GP regression is very

large. As such, each new data point is selected sequentially and methodically, so

that it provides the most improvement to the surrogate model. This type of data

sampling method in which the algorithm is able to determine the optimal set of input

parameters for the next sample is called active learning or optimal experimental design

[23, 24].

In order to understand active learning, suppose there exists a GP regression model

𝑦𝑛−1(𝑥) with an error of 𝜎𝑛−1(𝑥) =
√︀
𝐾𝑦𝑦(𝑥, 𝑥) trained from a data set with input

vectors {𝑥1, 𝑥2, ..., 𝑥𝑛−1}. The goal of active learning is to use the predicted mean

and error estimate, to optimize the selection of the next sample, 𝑥*. Specifically,

active learning uses what is called an acquisition function 𝑞(𝑥|𝑦𝑛−1, 𝜎𝑛−1) in order

to determine this next optimal sample 𝑥*. The definition of a generic acquisition

function is as follows:

𝑥* = argmax 𝑞(𝑥|𝑦𝑛−1, 𝜎𝑛−1). (2.8)

Once this optimal sampling location 𝑥* is determined, the sample is taken at that

point to determine its output 𝑦*. The new data is then added to the existing data

set 𝒟𝑛 = {𝒟𝑛−1 ∪ (𝑥*, 𝑦*)}. The new surrogate mean 𝑦𝑛(𝑥) and error 𝜎𝑛(𝑥) are

determined and the process is iterated as necessary. Figure 2-1 illustrates the active

sampling process.
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(a) Estimation of the surrogate predicted
mean 𝑦𝑛−1 and its error 𝜎𝑛−1

(b) Sampling at a new optimal location 𝑥*

and estimation of new surrogate predicted
mean 𝑦𝑛

Figure 2-1: Demonstration of active sampling method of determining the optimal
sample location and updating the predicted mean of the surrogate model.

In figure 2-1, the optimal sampling location 𝑥* is determined by locating the point in

the domain with the largest model error 𝜎𝑛−1. This popular acquisition function is

known as Uncertainty Sampling (US) and is shown in equation (2.9), [25].

𝑞𝑈𝑆(𝑥) = 𝜎2(𝑥) (2.9)

The US acquisition function is widely used because it is intuitive, robust, broadly ap-

plicable, inexpensive to compute, and has analytical gradients, which allows the use of

gradient-based optimizers so it becomes considerably more efficient than other acqui-

sition functions [32]. There are many different acquisition functions like integrated

variance reduction, input-weighted integrated variance reduction, mutual informa-

tion, and likelihood-weighted acquisition functions [25]. However, for the purpose of

this thesis in which non-myopic active learning is explored, only the US acquisition

function is used due to its robustness.

2.2.3 Myopic versus Non-Myopic Active Learning Algorithms

Typical active learning sampling methods are myopic, meaning that they only con-

sider a single step into the future when selecting the next optimal sampling location
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[26]. Once a location is selected, the output is evaluated at that single point and this

new data is added to the existing data set. In particular, when a new single location

𝑥𝑛 is determined using active learning criteria, the output 𝑦𝑛 is computed from a sim-

ulation or experiment, and the data set is augmented with the new information, i.e.

𝒟𝑛 = {𝒟𝑛−1 ∪ (𝑥𝑛, 𝑦𝑛)}. Figure 2-2 illustrates this myopic sampling algorithm.

Figure 2-2: Myopic Sampling Algorithm: At every step, an active learning criterion
determines a single new input 𝑥𝑛, for which we obtain the output 𝑦𝑛.

While this myopic approach is often used in practice, there are other non-myopic

approaches that provide solutions to the multi-step look-ahead problem with better

results than a myopic approach [26, 30]. Specifically, a non-myopic approach enables

the algorithm to determine the next optimal sampling location based on the influence

of several future potential sampling locations. This allows the algorithm to select

the optimal sampling location with the knowledge about how the multiple future

sampling locations may influence the next sample. This influence of future evaluations

on current sampling locations is illustrated in figure 2-3 using a blue line.
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Figure 2-3: Non-Myopic Sampling Algorithm: The next sample is influenced by po-
tential locations of future samples. This allows the method to consider the impact of
future results beyond the capability of myopic sampling.

There are many different non-myopic algorithms that use various acquisition functions

to evaluate the impact of future samples [26, 30, 33, 34]. These acquisition functions

vary in how they evaluate and utilize the expected value of the future samples on the

model. However, all of these non-myopic sampling methods are only used for single

fidelity surrogate models and do not offer a means to which non-myopic methods

can be expanded to operate between models of different fidelity. In this thesis, a

new sampling method is explored by bridging the gap between non-myopic sampling

and multi-fidelity GP modeling to achieve improvements in lowering the cost and

increasing the accuracy of high fidelity simulators.

2.2.4 Multi-Fidelity Modeling

Multi-fidelity GP modeling uses multiple separate simulators or experiments to de-

velop the surrogate model. Like in the present context of modeling UUV hydrody-

namic interactions, there is a high fidelity model which is computationally expensive

to use and a low fidelity model which requires much less computational effort to per-

form. In the context of this work, the high fidelity simulation is CFD and the low

fidelity simulation is a potential flow solver. Because of the different assumptions

and physics being modeled, the CFD and potential flow simulators produce different

results for any given sampling location. These results are stored in a high fidelity data
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set denoted by 𝒟ℋℱ = {Xℋℱ ,yℋℱ} and a low fidelity data set 𝒟ℒℱ = {Xℒℱ ,yℒℱ}.

Kennedy and O’Hagan developed the following first-order auto-regressive co-kriging

scheme for the relationship between high and low fidelity models [29].

𝑓ℋℱ(X*) = 𝜌(X*)𝑓ℒℱ(X*) + 𝛿(X*) (2.10)

Functions 𝑓(X*) and 𝛿(X*) represent GP regression models while 𝜌 is a scaling factor

that correlates the high fidelity and low fidelity models. This scaling factor is set to

one for the purposes of this thesis because there is no scaling needed between CFD

and potential flow simulators. Using a multi-fidelity modeling approach provides

the benefit of improving the accuracy and cost of the surrogate model by combining

expensive accurate high-fidelity data with cheaper and less accurate low-fidelity data

[29]. This scheme and the others can be used recursively to account for more than

two levels of fidelity, but only two levels are used for this thesis. There are other

schemes to account for multi-fidelity modeling besides the first-order auto-regressive

co-kriging scheme. These other schemes include a deep GP in which the scaling factor

is replaced with an unknown function 𝑧(𝑓ℒℱ(𝑥)) which maps the difference between

the low and high fidelity models [35]. This function 𝑧 is often another GP regression,

which is why this is often called deep GP regression, but the added layer of GP

regression comes at a steep computational price. Another scheme is the non-linear

auto-regressive multi-fidelity GP regression scheme in which a higher dimension GP

regression model is created that jointly relates the input space and the outputs of

the lower fidelity level to the output of the higher fidelity model. Once again, this

modification to the multi-fidelity modeling scheme increases the computational cost

of the model [36].

As such, the first-order auto-regressive co-kriging scheme is used for this study due

to its low cost and ease of implementation [35, 36, 29]. Equation (2.10) implies the

Markov property: given 𝑓ℒℱ(X*), nothing more can be learned about 𝑓ℋℱ(X*) from

any other model output 𝑓ℒℱ(X′
*) for X* ̸= X′

*, i.e cov{𝑓ℋℱ(X*), 𝑓ℒℱ(X
′
*)|𝑓ℒℱ(X*)} =

0, [29].
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This allows for the following definition of the high fidelity 𝑓ℋℱ(X*), low fidelity

𝑓ℒℱ(X*), multi-fidelity 𝑓ℳℱ(X*), and 𝛿(X*) GP regression models:

𝑓ℋℱ(X*) ∼ 𝒢𝒫(𝑦ℋℱ(X*), 𝐾𝑦𝑦,ℋℱ(X*,X
′
*))

𝑓ℒℱ(X*) ∼ 𝒢𝒫(𝑦ℒℱ(X*), 𝐾𝑦𝑦,ℒℱ(X*,X
′
*))

𝛿(X*) ∼ 𝒢𝒫(𝑦𝛿(X*), 𝐾𝑦𝑦,𝛿(X*,X
′
*))

𝑓ℳℱ(X*) ∼ 𝒢𝒫(𝑦ℳℱ(X*), 𝐾𝑦𝑦,ℋℱ(X*,X
′
*))

where 𝑦ℳℱ(X*) = 𝑦ℒℱ(X*) + 𝑦𝛿(X*)

and 𝐾𝑦𝑦,ℳℱ(X*,X
′
*) = 𝐾𝑦𝑦,ℋℱ(X*,X

′
*) = 𝐾𝑦𝑦,𝛿(X*,X

′
*)

(2.11)

By expanding equations (2.2), (2.6), (2.7), and (2.10) to account for the multi-fidelity

modeling approach, the predicted mean and covariance of the low and high fidelity GP

models are derived. Additionally, the 𝛿(X*) GP regression model from equation (2.10)

has a predicted mean and covariance listed in equation (2.14). In order to determine

the mean of the 𝛿(X*) GP regression model, a vector of the outputs y𝛿 is needed. This

is found by using the difference between the high fidelity and low fidelity outputs for

each of the 𝑛 high fidelity samples at the corresponding low fidelity sample locations

as shown in equation (2.15). This requires that the samples of the high fidelity data

set are a subset within the low fidelity data set, i.e Xℒℱ ⊆ Xℋℱ .

𝑦ℋℱ(X*) = 𝐾(X*,Xℋℱ)[𝐾(Xℋℱ ,Xℋℱ) + 𝜎2
𝑛I]

−1yℋℱ

𝐾𝑦𝑦,ℋℱ(X*,X
′
*) = 𝐾(X*,X

′
*)−𝐾(X*,Xℋℱ)[𝐾(Xℋℱ ,Xℋℱ) + 𝜎2

𝑛I]
−1𝐾(Xℋℱ ,X

′
*)

𝜎ℋℱ(X*) =
√︁
𝐾𝑦𝑦,ℋℱ(X*,X*)

(2.12)
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and

𝑦ℒℱ(X*) = 𝐾(X*,Xℒℱ)[𝐾(Xℒℱ ,Xℒℱ) + 𝜎2
𝑛I]

−1yℒℱ

𝐾𝑦𝑦,ℒℱ(X*,X
′
*) = 𝐾(X*,X

′
*)−𝐾(X*,Xℒℱ)[𝐾(Xℒℱ ,Xℒℱ) + 𝜎2

𝑛I]
−1𝐾(Xℒℱ ,X

′
*)

𝜎ℒℱ(X*) =
√︁
𝐾𝑦𝑦,ℒℱ(X*,X*)

(2.13)

and

𝑦𝛿(X*) = 𝐾(X*,Xℋℱ)[𝐾(Xℋℱ ,Xℋℱ) + 𝜎2
𝑛I]

−1y𝛿

𝐾𝑦𝑦,𝛿(X*,X
′
*) = 𝐾𝑦𝑦,ℋℱ(X*,X*)

𝜎𝛿(X*) =
√︁
𝐾𝑦𝑦,𝛿(X*,X*)

(2.14)

and

y𝛿 = {𝑦ℋℱ ,𝑖 − 𝑦ℒℱ ,𝑖}𝑛𝑖=1
(2.15)

Equations (2.11) through (2.15) are the framework for multi-fidelity GP regression.

This framework provides the grounds for which the non-myopic active sampling con-

cept can be incorporated into a multi-fidelity GP regression scheme to improve the

cost and accuracy of the surrogate model.

2.3 Non-Myopic Multi-Fidelity Active Learning

2.3.1 Inter-Model Acquisition Function

Motivated by the advantage of producing a low cost and high accuracy surrogate

model using the multi-fidelity framework, as well as a non-myopic setup for active

learning, the formulation of a new non-myopic multi-fidelity active learning algorithm

is formalized.

Before the algorithm can be formalized, a new type of acquisition function called an
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inter-model acquisition function 𝑞𝐼𝑀 must be introduced. It is used to determine the

next optimal location for the high fidelity simulation to be performed. This new type

of acquisition function is unique because it takes into account the statistics of multiple

GP regression models with differing fidelity, rather than a single fidelity GP regression

model. The generic form of the inter-model acquisition function is as follows:

𝑞𝐼𝑀(X*) = 𝑓(𝑦ℋℱ(X*), 𝜎ℋℱ(X*) = 𝜎𝛿(X*), 𝑦ℒℱ(X*), 𝜎ℒℱ(X*), 𝑦𝛿(X*)). (2.16)

In order to formulate an effective inter-model acquisition function, consider an exam-

ple high fidelity and a multi-fidelity GP regression model. Recall from equation (2.11)

that 𝑦ℳℱ(X*) = 𝑦ℒℱ(X*) + 𝑦𝛿(X*) and 𝜎ℳℱ(X*) = 𝜎ℋℱ(X*) = 𝜎𝛿(X*). Figure 2-

4 illustrates a high fidelity and a multi-fidelity GP regression model from equation

(2.11) with three different low fidelity active samples.

(a) Low Fidelity Active Sampling: The high (blue) and multi-fidelity (orange) GP regression
models are shown with the next three low fidelity sampling locations.
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(b) Inter-Model Active Sampling: The high fidelity sampling location is determined by
considering how the multi-fidelity model is impacted by the new low fidelity samples.

Figure 2-4: Inter-Model Acquisition Function: The location of the next high fidelity
sample is determined by considering the difference between the predicted mean of the
high and multi-fidelity models.

In the example in figure 2-4, the first two low fidelity active samples have little

impact on the mean of the multi-fidelity GP regression model. This is because the

multi-fidelity GP regression model is close to the ground truth in these sampling

locations so little improvement is made. The third low fidelity sample has a large

impact on the multi-fidelity GP regression model because the ground truth is farther

away from the prediction. For this reason, the inter-model acquisition function in

use for this thesis calculates the absolute difference between the predicted mean of

the high and multi-fidelity GP regression models. This is referred to as the absolute

difference inter-model acquisition function and is defined in equation (2.17). The

high fidelity sample is selected at the location in the domain where the maximum

absolute difference between the mean of the high and multi-fidelity GP model exists.

This is chosen to capitalize on the exploration of the low fidelity sampling. If this

difference is the result of a divergence between the low and high fidelity simulations,

rather than an optimal location where the high fidelity GP model could be improved,

then the 𝛿(X*) GP model from equations (2.10) and (2.11) is updated to account

for this discrepancy. This correction allows the multi-fidelity GP regression model

to provide greater opportunities to identify optimal locations for future high fidelity
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samples.

𝑞𝐴𝐷(X*) = |𝑦ℋℱ(X*)− 𝑦ℳℱ(X*)| = |𝑦ℋℱ(X*)− (𝑦ℒℱ(X*) + 𝑦𝛿(X*))|

𝑥*ℋℱ = argmax 𝑞𝐴𝐷(X*) = argmax |𝑦ℋℱ(X*)− 𝑦ℳℱ(X*)|
(2.17)

Because the low fidelity model can be sampled many times before sampling a high

fidelity data point, the non-myopic characteristic of the acquisition function emerges.

It considers how the low fidelity model changes as it iterates through many future low

fidelity samples and uses this information to determine the location of the next high

fidelity sample. This non-myopia allows the more robust exploration of the domain

in the low fidelity regime before a high fidelity sample is taken. This can help identify

inaccuracies in the high fidelity regime.

2.3.2 Non-Myopic Multi-Fidelity (NMMF) Active Learning

Algorithm

By combining the multi-fidelity GP regression framework with the non-myopic ap-

proach for active learning, the formulation of a non-myopic multi-fidelity active learn-

ing algorithm emerges. It consists of the following steps listed in the pseudo-code in

Algorithm 1:

1. Begin with a small number of high and low fidelity simulations performed as

bootstraps, i.e. 𝒟ℋℱ and 𝒟ℒℱ . These bootstraps are performed at the same

X locations within the domain but result in different outputs, i.e. yℋℱ and

yℒℱ . These bootstrapped data sets are used to determine 𝒟𝛿 = {X,y𝛿} from

equation (2.15). Next, GP regression is performed on 𝒟ℋℱ ,𝒟ℒℱ ,𝒟𝛿 to obtain

𝑦ℒℱ , 𝑦ℋℱ , 𝑦𝛿, 𝜎ℒℱ , and 𝜎ℋℱ = 𝜎𝛿 using equations (2.12), (2.13), and (2.14).

2. Perform active learning to select a sample from the low fidelity model using

equation (2.8) and run the corresponding low fidelity simulation. The uncer-

tainty sampling acquisition function in equation (2.9) is used due to its ro-
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bustness. After the sample has been selected and simulated, GP regression is

performed using equation (2.13) to find the new 𝑦ℒℱ and 𝜎ℒℱ . This low fidelity

sampling is repeated for a set number of iterations 𝑛. This search provides new

information about the low fidelity GP regression model at many new points

without having the cost of running multiple high fidelity simulations.

3. Select the high fidelity sample using equation (2.17) and perform the high fi-

delity simulation at this sample location. This inter-model acquisition function

is non-myopic because it considers how the low fidelity model evolves through

multiple samples and uses this information to select the high fidelity sampling

location. Next, perform a low fidelity simulation at the location of the high

fidelity sample and add it to the low fidelity data set 𝒟ℒℱ .

4. Remove any low fidelity samples from the low fidelity data set 𝒟ℒℱ that are

not at locations where high fidelity samples are also taken. This prevents the

low fidelity data set from becoming too large to perform the inverse matrix

operation in equation (2.13) and from having a negative impact on the GP

regression. Use equation (2.15) to update 𝒟𝛿 with the new high fidelity sample.

Finally, perform GP regression on 𝒟ℋℱ ,𝒟ℒℱ ,𝒟𝛿 to obtain 𝑦ℒℱ , 𝑦ℋℱ , 𝑦𝛿, 𝜎ℒℱ ,

and 𝜎ℋℱ = 𝜎𝛿 using equations (2.12), (2.13), and (2.14).

5. Repeat steps 2 through 4 until the desired number of high fidelity samples is

taken 𝑚.

The pseudo-code in Algorithm 1 outlines the non-myopic multi-fidelity active learning

algorithm for GP regression.
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Algorithm 1 Non-Myopic Multi-Fidelity (NMMF) Active Learning
Input: 𝒟ℋℱ = {𝑋ℋℱ ,yℋℱ},𝒟ℒℱ = {𝑋ℒℱ ,yℒℱ},𝒟𝛿 = {X𝛿,y𝛿}

where 𝑋ℒℱ = 𝑋ℋℱ = 𝑋𝛿

Perform GP regression on 𝒟ℋℱ ,𝒟ℒℱ ,𝒟𝛿 to obtain 𝑦ℒℱ ,0(X*), 𝜎ℒℱ ,0(X*), 𝑦ℋℱ ,0(X*),
𝜎ℋℱ ,0(X*), 𝑦𝛿,0(X*), 𝜎𝛿,0(X*); equations (2.12, 2.13, 2.14)

For 𝑖 = 1 to 𝑚
For 𝑗 = 1 to 𝑛

Select low fidelity location 𝑥*ℒℱ ,𝑗 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑞𝑈𝑆(X*|𝜎ℒℱ ,𝑗−1(X*));
equations (2.8, 2.9)

Run low fidelity simulation at 𝑥*ℒℱ ,𝑗 to obtain 𝑦*ℒℱ ,𝑗
Temporarily augment data set

𝒟ℒℱ ,𝑗 = {(Xℒℱ ,𝑗−1,yℒℱ ,𝑗−1) ∪ (𝑥*ℒℱ ,𝑗, 𝑦
*
ℒℱ ,𝑗)} until 𝑥*ℋℱ ,𝑖 is found

Perform GP regression on 𝒟ℒℱ ,𝑗 to obtain 𝑦ℒℱ ,𝑗(X*), 𝜎ℒℱ ,𝑗(X*);
equation (2.13)

End For
Select high fidelity location

𝑥*ℋℱ ,𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥 𝑞𝐴𝐷(X*|𝑦ℋℱ(X*), 𝑦ℒℱ(X*), 𝑦𝛿(X*)); equation (2.17)
Run high fidelity simulation at 𝑥*ℋℱ ,𝑖 to obtain 𝑦*ℋℱ ,𝑖
Augment data set 𝒟ℋℱ ,𝑖 = {(Xℋℱ ,𝑖−1,yℋℱ ,𝑖−1) ∪ (𝑥*ℋℱ ,𝑖, 𝑦

*
ℋℱ ,𝑖)}

Restore low fidelity data set 𝒟ℒℱ to condition before augmented with
𝑥*ℒℱ ,𝑗, 𝑦

*
ℒℱ ,𝑗, i.e. 𝒟ℒℱ ,𝑖−1

Run low fidelity simulation at 𝑥*ℒℱ ,𝑖 = 𝑥*ℋℱ ,𝑖 to obtain 𝑦*ℒℱ ,𝑖
Augment data sets 𝒟ℒℱ ,𝑖 = {(Xℒℱ ,𝑖−1,yℒℱ ,𝑖−1) ∪ (𝑥*ℒℱ ,𝑖, 𝑦

*
ℒℱ ,𝑖)}, and

𝒟𝛿,𝑖 = {(X𝛿,𝑖−1,y𝛿,𝑖−1) ∪ (𝑥*ℒℱ ,𝑖, 𝑦
*
ℋℱ ,𝑖 − 𝑦*ℒℱ ,𝑖)}; equation (2.15)

Perform GP regression on 𝒟ℋℱ ,𝑖,𝒟ℒℱ ,𝑖,𝒟𝛿,𝑖 to obtain 𝑦ℒℱ ,𝑖(X*), 𝜎ℒℱ ,𝑖(X*),
𝑦ℋℱ ,𝑖(X*), 𝜎ℋℱ ,𝑖(X*), 𝑦𝛿,𝑖(X*), 𝜎𝛿,𝑖(X*); equations (2.12, 2.13, 2.14)

End For

2.3.3 Advantages of Multi-Fidelity Gaussian Process Regres-

sion Model

While the multi-fidelity GP regression model serves an important role in the active

learning process by reducing cost and increasing accuracy of the surrogate model,

there are additional benefits that come from using this approach. Because this multi-

fidelity GP model is used to find the relationship between the high fidelity and low

fidelity simulators, this difference can be used by simulation developers to better

understand the limitations of low fidelity simulators. There may be portions of the

input space in which the low fidelity model is suitable for many purposes. The multi-
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fidelity GP model helps quantify the accuracy of the low fidelity model with respect to

the high fidelity model. Additionally, the results of the multi-fidelity GP model could

be integrated directly into the low fidelity simulators to improve their accuracy.

2.4 Evaluation of NMMF Active Learning Algorithm

To assess the performance of the NMMF active learning algorithm compared to other

state of the art algorithms, a large number of high fidelity simulations needs to be per-

formed. For this reason, multiple test problems were used to evaluate the performance

of the NMMF algorithm before it is used for CFD simulations on UUV hydrodynamic

interactions. Specifically, the performance of the developed algorithm is compared to

that of the traditional myopic multi-fidelity sampling method, as well as the standard

sampling method using the US acquisition function for the high fidelity model.

Four different prototype problems are selected in a multi-fidelity setup with a number

of dimensions close to that of the UUV and submarine hydrodynamics problem. For

the test problems in this section, the number of low fidelity samples that are performed

before selecting the high fidelity sampling location is held constant at 10. The error

in use to evaluate the accuracy of the surrogates is the Mean Absolute Percentage

Error (MAPE). This is chosen because it normalizes the error, rather than looking

at absolutes error alone. The MAPE is defined in the following equation in terms of

the predicted quantity, 𝑦𝑝, and its exact value 𝑦𝑒:

𝑀𝐴𝑃𝐸 =
1

𝑛

𝑛∑︁
𝑖=1

⃒⃒⃒⃒
𝑦𝑝,𝑖 − 𝑦𝑒,𝑖
𝑦𝑒,𝑖

⃒⃒⃒⃒
(2.18)

2.4.1 Park Function

Park developed a four dimensional problem that has been used in literature to evaluate

the accuracy of computer models [37]. Xiong provided a low fidelity approximation

to this function which has further been used to evaluate multi-fidelity models [38].

58



The following equations are the high and low fidelity models used to evaluate the

non-myopic multi-fidelity sampling algorithm.

𝑦ℋℱ(𝑥) =
2

3
𝑒𝑥1+𝑥2 − 𝑥4 sin (𝑥3) + 𝑥3 (2.19)

𝑦ℒℱ(𝑥) = 1.2𝑦ℋℱ(𝑥)− 1 (2.20)

The domain of the input space is 𝑥𝑖 𝜖 [0, 1] for all 𝑖 = 1, 2, 3, 4. In order to evaluate

the performance of the new sampling method, the NMMF sampling algorithm is run

alongside the traditional myopic multi-fidelity sampling algorithm and a standard

high fidelity active learning algorithm. The following plot shows how the error of

the different methods is reduced as the number of high fidelity simulations was per-

formed. The entire process was repeated 100 times to reduce the variance between

experiments.

Figure 2-5: Comparison of non-myopic multi-fidelity active learning algorithm against
other active sampling algorithms on the Park function.

Overall, throughout the majority of the solution space, the NMMF sampling algo-

rithm outperforms both the myopic multi-fidelity and standard high fidelity algo-

rithms. While the NMMF algorithm did not start out as the most accurate method,
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after about 18 simulations, this method improved the accuracy of the surrogate model

more than the other methods. These results support using the non-myopic multi-

fidelity sampling algorithm to increase the accuracy of a surrogate model at a cheaper

cost.

2.4.2 Three DOF trebuchet with a hinged counterweight and

sling

Consider other test problem that simulates the projectile range from a three degree of

freedom (DOF) trebuchet with a hinged counterweight and sling [39, 40, 41]. Figure

2-6 illustrates the mechanical system of the simulation.

Figure 2-6: Three DOF Trebuchet with a Hinged Counterweight and Sling

Using Lagrangian mechanics, the equations of motion outlined in equation (2.21) are

derived to simulate the motion of the trebuchet using the variables defined in figure 2-

6. These equations of motion are coupled and highly non-linear. These are the types

of problems for which surrogate models are often created. The UUV hydrodynamic
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interactions are also coupled and non-linear like this test case.⎡⎢⎢⎢⎣
𝑚1𝑙

2
1 +𝑚2𝑙

2
2 +𝑚𝑎𝑟𝑚𝑙

2
𝑎𝑟𝑚 + 𝐼𝑎𝑟𝑚 𝑚1𝑙1𝑙4 cos (𝜃 − 𝜑) −𝑚2𝑙2𝑙3 cos (𝜃 − 𝜑)

𝑚1𝑙1𝑙4 cos (𝜃 − 𝜑) 𝑚1𝑙
2
4 0

−𝑚2𝑙2𝑙3 cos (𝜃 − 𝜑) 0 𝑚2𝑙
2
3

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝜃

𝜑

𝜓

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
−𝑚1𝑙1𝑙4�̇�

2 sin (𝜃 − 𝜑) +𝑚2𝑙2𝑙3�̇�
2 sin (𝜃 − 𝜑)− (𝑚1𝑙1 −𝑚2𝑙2 −𝑚𝑎𝑟𝑚𝑙𝑎𝑟𝑚)𝑔 cos (𝜃)

𝑚1𝑙1𝑙4𝜃
2 sin (𝜃 − 𝜑)−𝑚1𝑙4𝑔 cos (𝜑)

𝑚2𝑙2𝑙3𝜃
2 sin (𝜃 − 𝜑)−𝑚2𝑙3𝑔 cos (𝜓)

⎤⎥⎥⎥⎦
(2.21)

where 𝑚𝑎𝑟𝑚=𝑓(𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠), 𝑙𝑎𝑟𝑚=𝑓(𝑚𝑎𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠), and

𝐼𝑎𝑟𝑚=𝑓(𝑚𝑎𝑟𝑚, 𝑙1, 𝑙2, 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠).

The initial conditions in use to solve the system of equations are listed below:

𝜃0 = sin−1

(︂
ℎ0
𝑙2

)︂
, 𝜑0 =

−𝜋
2
, 𝜓0 = 0, 𝜃0 = 0, 𝜑0 = 0, 𝜓0 = 0 (2.22)

The projectile is released at a constant launch hook angle 𝛽. After the projectile is

released, the range of the projectile is determined using standard Newtonian projectile

motion physics which neglects air resistance.

These equations of motion have the potential to allow for a higher dimension domain

by allowing more parameters to vary, like the launch hook angle 𝛽 or other trebuchet

arm moment of inertia parameters like material density or thickness of the arm.

Likewise, the domain could be reduced by fixing certain input variables to a constant

value. The domain for this problem is selected to be six-dimensional and the range

of the various input variables is as follows:
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𝑙1 ∈ [0.5, 1.5] m

𝑙2 ∈ [3.5, 4.5] m

𝑙3 ∈ [3.0, 4.0] m

𝑙4 ∈ [0.1, 1.0] m

ℎ0 ∈ [3.0, 3.5] m

𝑚1 ∈ [40, 400] kg

(2.23)

A simpler two degree of freedom simulation is used for the low fidelity model of the

trebuchet. For this model, the counterweight is not hinged. Instead, it is mounted

directly on the end of the trebuchet rotating arm. This simplifies the equations of

motion by removing the influence of the 𝑙4 and 𝜑 variables.

Figure 2-7 shows the performance of the different methods on the three DOF trebuchet

problem. The entire process is repeated 100 times to reduce the variance between

experiments.

Figure 2-7: Comparison of non-myopic multi-fidelity active learning algorithm against
other active sampling algorithms on the three DOF trebuchet.
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The addition of the extra low fidelity data points significantly improves the surrogate

model. In addition, the non-myopic multi-fidelity sampling method produces a more

accurate model with fewer high-fidelity experiments than the other sampling methods,

although the benefits in this case are not substantial.

2.4.3 Borehole Function

The borehole function is an eight-dimensional highly non-linear equation developed

by Harper and Gupta [42]. This equation is used to determine the volumetric flow

rate through a borehole that is drilled through an upper aquifer, a nuclear waste

repository, and into a lower aquifer. This function has been used in literature to

evaluate the performance of computer models [25]. Xiong also developed a low fidelity

approximation of this model which enables the borehole function to also evaluate

multi-fidelity models [38]. The multi-fidelity borehole function, listed in equations

(2.24) and (2.25), is used to evaluate the performance of the non-myopic multi-fidelity

sampling algorithm.

𝑦ℋℱ(𝑥) =
2𝜋𝑇𝑢(𝐻𝑢 −𝐻𝑙)

ln (𝑟/𝑟𝑤)

(︂
1 +

2𝐿𝑇𝑢
ln (𝑟/𝑟𝑤)𝑟2𝑤𝐾𝑤

+
𝑇𝑢
𝑇𝑙

)︂−1

(2.24)

𝑦ℒℱ(𝑥) =
5𝑇𝑢(𝐻𝑢 −𝐻𝑙)

ln (𝑟/𝑟𝑤)

(︂
1.5 +

2𝐿𝑇𝑢
ln (𝑟/𝑟𝑤)𝑟2𝑤𝐾𝑤

+
𝑇𝑢
𝑇𝑙

)︂−1

(2.25)

Equation (2.26) lists the domain of the various input variables.
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𝑟𝑤 ∈ [0.05, 0.15] m

𝑟 ∈ [100, 50000] m

𝑇𝑢 ∈ [63070, 115600] m2/yr

𝐻𝑢 ∈ [990, 1110] m

𝑇𝑙 ∈ [63.1, 116] m2/yr

𝐻𝑙 ∈ [700, 820] m

𝐿 ∈ [1120, 1680] m

𝐾𝑤 ∈ [9855, 12045] m/yr

(2.26)

The considered GP sampling methods are evaluated on the borehole function 450

times to reduce the variance of the results. Figure 2-8 shows how each method

performs on the borehole function test case.

Figure 2-8: Comparison of non-myopic multi-fidelity active learning algorithm against
other active sampling algorithms on the borehole function.

The NMMF sampling method is able to produce the lowest model error in the major-

ity of the solution space. Initially, this method has the highest error, but it rapidly
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improves to the most accurate sampling scheme, approximately after 30 to 40 simu-

lations are conducted. This is likely because the low and high fidelity models have a

larger difference than in the other test cases. This means that the initial high fidelity

samples are likely used to quantify the difference 𝛿(X*) (equations (2.10) and (2.11))

between the high and low fidelity models, rather than better explore the domain.

Once this difference is well explored and quantified, the exploratory benefits of the

NMMF algorithm quickly outperform the other two sampling methods.

2.4.4 Subsonic Straight-Tapered Wing Lift Curve Slope

The last test problem used to evaluate the NMMF active learning GP algorithm is the

prediction of the Wing Lift Curve Slope for subsonic straight-tapered aircraft wings.

This approach used two different models from USAF Stability and Control DATCOM

and from Commercial Airplane Design Principles [43, 44]. The following series of

equations were used as the low and high fidelity models.

Low fidelity model:

Λ𝐿𝐸 = tan−1

(︂
tan(Λ𝑐/4) +

1

𝐴

(︂
1− 𝜆

1 + 𝜆

)︂)︂
(𝐶𝐿𝛼)𝑡ℎ𝑒𝑜𝑟𝑦 = 8 tan−1

(︂
𝜋𝐴

16 + 𝜋𝐴/(1 + 2𝜆 tan(Λ𝐿𝐸))

)︂
𝐶𝐿𝛼

(𝐶𝐿𝛼)𝑡ℎ𝑒𝑜𝑟𝑦
= 𝑓

(︃
1

3 + 𝐴

(︂
1− 𝜆

1 + 2𝜆

)︂2

,
𝑡

𝑐

)︃
from Figure 4.1.3.2-50a [44]

𝑦ℒℱ(𝑥) = 𝐶𝐿𝛼 = (𝐶𝐿𝛼)𝑡ℎ𝑒𝑜𝑟𝑦

(︂
𝐶𝐿𝛼

(𝐶𝐿𝛼)𝑡ℎ𝑒𝑜𝑟𝑦

)︂
(2.27)
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High fidelity model:

𝛽 =
√
1−𝑀2

𝜅 = 𝑐𝑙𝛼/2𝜋

Λ𝑐/2 = tan−1

(︂
tan(Λ𝑐/4)−

1

𝐴

(︂
1− 𝜆

1 + 𝜆

)︂)︂
𝑦ℋℱ(𝑥) = 𝐶𝐿𝛼 =

2𝜋𝐴

2 +

√︂
𝐴2𝛽2

𝜅2

(︁
1 +

tan2(Λ𝑐/2)

𝛽2

)︁
+ 4

(2.28)

The domain across the various input variables is as follows.

𝑐𝑙𝛼 𝜖 [0.11, 0.12]

𝐴𝜖 [5, 20]

𝜆 𝜖 [0.2, 0.25]

Λ𝑐/4 𝜖 [15, 35] degrees

𝑀 𝜖 [0.2, 0.8]

𝑡/𝑐 𝜖 [0.08, 0.2]

(2.29)

The various sampling methods are repeated on the Wing Lift Curve Slope 100 times

to ensure the consistency of the results. The figure below shows the performance of

each sampling method.
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Figure 2-9: Comparison of non-myopic multi-fidelity active learning algorithm
against other active sampling algorithms on the wing lift curve slope.

Once again, the NMMF sampling method is able to produce the lowest error as

high fidelity simulations are added to the surrogate models. This means that a more

accurate surrogate can be developed using a smaller number of expensive high fidelity

simulations which further supports the use of the non-myopic multi-fidelity active

learning algorithm.

2.5 Adaptations for Multi-Dimensional Outputs

The considered example problems demonstrate the effectiveness of the NMMF ac-

tive learning algorithm in setups where the output is a scalar quantity. However,

for the submarine and UUV hydrodynamic interaction problem, the hydrodynamic

interaction surrogate model has vector outputs. One can address this issue by sim-

ply building three separate surrogate models, one for each output. This is a simple

approach that is often used in practice rather than adapting GP regression kernels

for multiple outputs due to its ease of implementation [45]. However, having multiple

outputs creates a new obstacle for the active learning process. When a high fidelity
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CFD simulation is run at a single location in the domain, all three outputs are de-

termined. The acquisition functions so far have been for a single output, but they

need to be modified to account for multiple outputs. The best way to make these

modifications is explored and evaluated.

Three different methods are considered as options to determine the optimal sampling

location for the multiple outputs. The first is a round robin method, meaning that the

output for which the optimal point is selected is alternated between all the outputs.

The number of outputs of the surrogate is denoted as 𝑘. Let 𝜎2
𝑖 denote each one

of the three different surrogate output variances or epistemic uncertainties where

𝑖 = 1, ..., 𝑘. Equation (2.30) shows the round robin method in which the sampling

location is selected by alternating which output is used for the acquisition function

over the span of all 𝑛 samples.

𝑥*𝑗+1 = arg max 𝑞𝑈𝑆 (𝑥|𝜎𝑖) for 𝑖 = 𝑗 − 1(𝑚𝑜𝑑 𝑘) + 1. (2.30)

The second method is the maximum variance method. This approach begins by

computing the optimal sampling location 𝑥′𝑖 for each output individually. Next, the

GP model is used to predict the epistemic variance at each location 𝜎2
𝑖 (𝑥

′
𝑖). This is

then normalized by the measured variance of the output data for each output 𝜎2
𝑦,𝑖.

Lastly, the sampling location with the largest normalized variance is selected because

this is the theorized location in which a sample could best reduce the uncertainty of

the multiple outputs. Equation (2.31) denotes the maximum variance method.

𝑥*𝑗+1 = arg max

(︂
𝜎2
𝑖 (𝑥

′
𝑖)

𝜎2
𝑦,𝑖

)︂
for 𝑖 = 1, .., 𝑘,

where 𝑥′𝑖 = argmax 𝑞𝑈𝑆(𝑥|𝜎2
𝑖 ) and 𝜎2

𝑦,𝑖 =
1

𝑗

𝑗∑︁
𝑙=1

(𝑦𝑖,𝑙 − 𝑦𝑖)
2

(2.31)

The third method under consideration is called the weighted method. This approach

looks for an optimal sampling location by assessing the multiple outputs as a whole

rather than individually. Specifically, the statistics of the individual outputs are
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combined based on a weight factor into a single weighted variance 𝜎2
𝑤 to be used with

the US acquisition function. The weight used for each output is the inverse of its

training data variance for that given output. This is used as the weight in order to

try and normalize the different output variances before they are combined. If they

are not normalized, then the variance of one output could dominate the weighted

variance, even if it has a low epistemic uncertainty. This could happen because

the outputs are not normalized so outputs with larger values would have a larger

impact on the weighted variance. Once these individual variances are combined into a

single weighted variance, the optimal sampling location is selected using the following

acquisition function:

𝑥*𝑗+1 = arg max 𝑞𝑈𝑆(𝑥|𝜎2
𝑤(𝑥)), where 𝜎2

𝑤(𝑥) =
𝑘∑︁
𝑖=1

𝜎2
𝑖 (𝑥)

𝜎2
𝑦,𝑖

(2.32)

An example problem with three outputs 𝑦1, 𝑦2, and 𝑦3 is used to evaluate these dif-

ferent multiple output sampling methods. The Park 1, Park 2, and Colville functions

listed as equations (2.33), (2.34), and (2.35) are used as the three surrogate outputs

[46]. The domain of the input space is 𝑥𝑖 ∈ [0.1, 1] for all 𝑖 = 1, 2, 3, 4.

𝑦1(𝑥) =
2

3
𝑒𝑥1+𝑥2 − 𝑥4 sin (𝑥3) + 𝑥3 (2.33)

𝑦2(𝑥) =
𝑥1
2

[︂√︂
1 + (𝑥2 + 𝑥23)

𝑥4
𝑥21

− 1

]︂
+ (𝑥1 + 3𝑥4)𝑒

1+sin (𝑥3) (2.34)

𝑦3(𝑥) = 100(𝑥21 − 𝑥2)
2 + (𝑥1 − 1)2 + (𝑥3 − 1)2 + 90(𝑥23 − 𝑥4)

2

+10.1((𝑥2 − 1)2 + (𝑥4 − 1)2) + 19.8(𝑥2 − 1)(𝑥4 − 1)
(2.35)

The various multiple output sampling methods are repeated 100 times to ensure

the results are consistent. Figure 2-10 shows the performance of each sampling

method.
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Figure 2-10: Comparison of the round robin, maximum variance, and weighted mul-
tiple output active sampling methods for three test cases.

The maximum variance criterion slightly outperforms the other two sampling meth-

ods. This is true when looking at each output individually and also when looking

at the average MAPE of all three outputs. The only portion of the solution space

in which the maximum variance criterion did not outperform the other two methods

is in the early stages of the sampling with less than 20 samples for 𝑦1. The round

robin method allocates optimal samples to this output despite it having the smallest

error while the maximum variance method allocates optimal samples for the outputs

with larger errors. This allows the round robin method to temporarily outperform

the maximum variance method for 𝑦1. However, the maximum variance method is

able to quickly catch up and outperform the round robin method for this output. The

weighted output method underperformed the other two methods. To this end, the

maximum variance criterion is selected as the multiple output sampling method for

the UUV and submarine hydrodynamic interactions problem.
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2.6 Conclusion

A new method for active sampling has been formulated that is non-myopic and also

utilizes models of multiple fidelity. The new approach allows for efficiently comput-

ing reduced order models with unprecedented accuracy due to its non-myopic active

search properties. It is ideal for situations where plentiful and accurate training data

is not easy to obtain, e.g. because of high computational cost. The advantages of the

new approach are demonstrated in four representative prototype systems. Addition-

ally, three different active sampling methods are evaluated for multiple output GP

regression models, with the maximum variance method having the best performance.

Overall, the NMMF active learning method is able to outperform the other sampling

methods and emerges as the ideal candidate for use when creating a surrogate model

to accurately predict the complex hydrodynamic interactions between a submarine

and UUV. This approach is well suited to capitalize on the high accuracy of the CFD

and the exploration of the low fidelity potential flow model.

Using GP regression as a surrogate enables the real-time prediction of the UUV

hydrodynamic interactions with the accuracy of CFD. Real-time modeling of these

hydrodynamic interactions is essential to simulate the motion required to launch and

recover UUVs from submarines. To this end, this surrogate model may be integrated

into UUV control and autonomy systems and motion simulators to further enable

UUV launch and recovery from submarines.
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Chapter 3

Computational Modeling of Multiple

Body Hydrodynamic Interactions

3.1 Introduction

One of the objectives of this thesis is to create a surrogate model that can make real

time predictions of the forces and moments due to the hydrodynamic interactions

between a moving UUV and submarine operating in close proximity. This surro-

gate model must be capable of determining these forces and moments based on the

any relative speed, longitudinal position, lateral position, heading angle, and size dif-

ference between the two vehicles. Determining these hydrodynamic interactions in

real time enables the surrogate model to be incorporated into the UUV control and

autonomy systems. Before this surrogate model can be created, the hydrodynamic

interaction forces and moments needed to be accurately simulated. The results of

these simulations can then be used as training data for the surrogate model. Without

verifying and validating the accuracy of the simulations, error could be introduced

into the surrogate model. Due to the complex and resource intensive nature of the

building real-world physical models, potential flow (P-Flow) and computational fluid

dynamics (CFD) are used as two different simulation approaches to determine the
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forces and moments caused by the hydrodynamic interactions.

3.2 Vehicle Configuration

In 1989, the Submarine Technology Program Office of the Defense Advanced Research

Projects Agency (DARPA) developed a submarine hull geometry known as the SUB-

OFF model. The purpose of this standardized submarine hull geometry is to allow

computational methods like potential flow analysis or CFD and real-world modeling

using experimental fluid dynamics (EFD) to be performed by different entities. The

DARPA SUBOFF model is a relevant submarine hull shape and has since been stud-

ied extensively using both CFD and EFD approaches [47, 48, 49, 50, 51, 52]. As

such, the DARPA SUBOFF submarine hull model is the ideal candidate with which

to perform the P-Flow and CFD simulations for this study. A scale model of the

International Submarine Engineering (ISE) Explorer AUV is used as the submarine

in the simulation in order to be consistent with the EFD results [3, 53]. The bow of

the Explorer model is an ellipsoid while the stern is a paraboloid. The equation of

the elliptical cross section of the bow is as follows where 𝑥 is the distance along the

vehicle axis, 𝑦 is the perpendicular distance from the axis, and 𝑅𝑈𝑈𝑉 is the radius of

the vehicle.

(︂
𝑥

2𝑅𝑈𝑈𝑉

)︂2

+

(︂
𝑦

𝑅𝑈𝑈𝑉

)︂2

= 1 (3.1)

Likewise, the equation for the parabolic cross section of the stern is listed below.

(︂
𝑥

4𝑅𝑈𝑈𝑉

)︂2

+
𝑦

𝑅𝑈𝑈𝑉

= 1 (3.2)

To begin the P-Flow and CFD simulations, the unappended SUBOFF model and

the Explorer model are created in Siemens Solid Edge, a three-dimensional computer

aided design (CAD) modeling software. For the purpose of P-Flow and CFD vali-
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dation, in order to be consistent with the EFD data, the SUBOFF model is used as

the UUV while the Explorer model is used as the submarine. The EFD data used

to validate the hydrodynamic interactions between the two vehicles is gathered at a

submarine to UUV diameter ratio 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 of 2.239. This same diameter ratio

was used for the potential flow and CFD simulations. The length and diameter of the

Explorer submarine model are 𝐿𝑆𝑢𝑏 = 2.935 m and 𝐷𝑆𝑢𝑏 = 0.405 m respectively. To

maintain the same diameter ratio as the EFD experiments, the length and diameter

of the UUV SUBOFF model are determined to be 𝐿𝑈𝑈𝑉 = 1.552 m and 𝐷𝑈𝑈𝑉 =

0.181 m respectively. The simulations are run at a forward speed of 𝑈 = 0.75 m/s

with a water density of 𝜌 = 997𝑘𝑔/𝑚3 and dynamic viscosity of 𝜇 = 8.899𝑥10−4 Pa-s.

Using the both the submarine and UUV lengths over all (LOA) as the characteristic

lengths L, the Reynolds Numbers are 𝑅𝑒𝑆𝑢𝑏 = 2.47𝑥106 and 𝑅𝑒𝑈𝑈𝑉 = 1.31𝑥106. All

of these parameters are held constant across the different simulations to align with

the EFD methods.

Two non-dimensional parameters known as the lateral and longitudinal separation

ratios, 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔, are used to refer to the distances between the two vehicles in

non-dimensional terms. The equations for these two parameters are as follows

𝑅𝐿𝑎𝑡 =
𝑦𝐷𝑖𝑠𝑡
𝐿𝑆𝑢𝑏

(3.3)

𝑅𝐿𝑜𝑛𝑔 =
𝑥𝐷𝑖𝑠𝑡
𝐿𝑆𝑢𝑏

(3.4)

where the relative lateral distance 𝑥𝐷𝑖𝑠𝑡 and relative longitudinal distance 𝑦𝐷𝑖𝑠𝑡 are

measured between the centers of buoyancy (CB) of the two vehicles. The 𝑅𝐿𝑜𝑛𝑔

parameter is positive when the CB of the UUV is located in front of the CB of the

submarine. The following figure illustrates the geometry and arrangements of the

P-Flow and CFD simulations.
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Figure 3-1: Geometry and orientation of vehicles configuration used to perform the
potential flow and CFD simulations. This is consistent with the EFD setup in order
to validate the results.

3.3 Computational Fluid Dynamics

3.3.1 Introduction

In order to complete the objectives of this study, many CFD simulations need to be

performed based on the relative speed, longitudinal position, lateral position, heading

angle, and size difference between the two vehicles. Ideally, a mesh independence

study, turbulence model independence study, and boundary layer independence study

would be performed for each configuration and simulation in the study, but this would

be computationally very expensive. Due to the limited resources available to perform

these necessary CFD simulations, various methods in the literature are leveraged to

ensure that accurate results are obtained. Resources are best spent examining the

domain of the surrogate model in order to deepen the understanding and resolution of

the solution space rather than performing these independence studies for each possible

configuration. Additionally, CFD simulations are validated against results from EFD

methods using a tow tank in order to confirm their accuracy. This further removes

the necessity for independence studies.
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3.3.2 Governing Equations

The fundamental principles used to develop the governing hydrodynamic equations

are the conservation of mass and the conservation of momentum. The equation for

the conservation of mass for a fluid is

𝜕𝜌

𝜕𝑡
+ �⃗� · ∇𝜌+ 𝜌∇ · �⃗� =

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · �⃗� = 0 (3.5)

where 𝜌 is the density of the fluid and �⃗� = ⟨𝑢, 𝑣, 𝑤⟩ is the three dimensional Cartesian

velocity of the fluid. The first two terms in equation (3.5) combine into the material

derivative of the density 𝐷𝜌/𝐷𝑡.

The conservation of momentum for a fluid in differential form is

𝜌
𝐷�⃗�

𝐷𝑡
= 𝜌

(︂
𝜕�⃗�

𝜕𝑡
+ �⃗� · ∇�⃗�

)︂
= 𝐹 +∇ · 𝜏 (3.6)

where 𝜏 is three by three tensor of the stresses on the fluid. These conservation of

momentum equations conserve momentum in the three Cartesian directions and are

often referred to as the Euler equations. While the conservation of mass and three

conservation of momentum equations provide a well defined structure, they do not

provide enough constraint to usefully resolve a given fluid field. These equations

provide a total of 10 unknowns, each one representing a three-dimensional field that

can also vary in time. These unknowns include the density 𝜌(�⃗�, 𝑡), three components

of the velocity vector �⃗�(�⃗�, 𝑡), and six elements of the stress tensor 𝜏(�⃗�, 𝑡). There are

only six unknown elements of the stress tensor rather than nine due to its symmetric

properties.

In order to close these systems of equations, two assumptions are made about the

properties of the fluid. The first is that the density of the fluid is constant. This

assumption is valid for the conditions in which submerged vehicles operate in the
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ocean. This means that the material derivative of the density 𝐷𝜌
𝐷𝑡

= 0. As such,

equation (3.5) simplifies to the following equation. This is often referred to as the

continuity equation.

∇ · �⃗� = 0 (3.7)

The second assumption is that the fluid is a Newtonian fluid. This means that there

is a linear relationship between the dynamic stresses of the fluid and the rate of

strain of the fluid. Therefore, the stress tensor simplifies to the combination of the

pressure terms on the diagonal and the off-diagonal dynamic stresses represented as

proportions of the strain rates. This is shown in einstein notation in the equation

below.

𝜏ij = 𝑃𝛿𝑖𝑗 + 𝜇

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
(3.8)

The 𝑢𝑖 represents a component of the velocity vector, 𝑃 is the pressure, 𝛿𝑖𝑗 is the

Kroenecker delta function, and 𝜇 is the fluid property known as the dynamic viscos-

ity that represents the linear relationship between the dynamic stresses and the rate

of strain of the fluid. By substituting equation (3.8) into equation (3.6), these equa-

tions simplify to the following well-known Navier-Stokes equations for incompressible

Newtonian fluids

𝐷�⃗�

𝐷𝑡
=
𝜕�⃗�

𝜕𝑡
+ (�⃗� · ∇) �⃗� = −1

𝜌
∇𝑃 + 𝜈∇2�⃗� +

1

𝜌
𝐹 (3.9)

where the fluid kinematic viscosity is defined as 𝜈 = 𝜇/𝜌. Equations (3.7) and (3.9)

constitute a closed system of governing equations because there are four equations and

four unknowns. Each of these unknowns represents a field and includes the pressure

𝑃 (�⃗�, 𝑡) and the three components of the velocity vector �⃗�(�⃗�, 𝑡).
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There is a means by which these four equations can be directly numerically solved.

This is known as a direct numerical solution (DNS). However, turbulence creates a

major challenge for DNS. In order to fully resolve the smallest scale eddies that arise

due to turbulence, the resolution has to be so fine that even supercomputers with

millions of core hours are only able to solve very simple geometries. For this reason,

DNS is a good research tool for validating solutions, but not good as a means to

solve the Navier-Stokes equations for engineering problems and explore design spaces

[18].

Because these equations cannot be directly solved with the available computational

resources, many different turbulence modeling schemes have been developed to be

solved simultaneously with equations (3.7) and (3.9). These turbulence models make

empirical approximations reduce the computational cost of solving these equations.

There are many publicly available software packages that solve this system of equa-

tions using various turbulence models. The commercially available CFD simulation

software known as Simcenter STAR-CCM+ is used for this research.

3.3.3 Single Vehicle CFD Simulation

The modeling of these viscous effects in the boundary layer have a major impact

on the results of the CFD simulation. As such, great care is taken to ensure that

the simulation methods appropriately model the viscous effects within the boundary

layer. This includes performing CFD simulations on a single vehicle and validating the

results before performing the CFD simulations and validation on the hydrodynamic

interactions between two vehicles.

3.3.3.1 Domain

The domain of the CFD simulation is the region in which the solver applies the gov-

erning physics and equations to determine the flow around the object. The accuracy

of CFD simulations depends on the size of the domain. The ITTC suggests that the

domain inlet, outlet, and side walls all be at least one model length away from the
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object [54]. The domain of the single vehicle simulations all fell within these mini-

mum values. The ITTC suggests that the inlet and outlet should be placed at least

10 and 20 model lengths away respectively if significant lift forces are expected. This

is not the case for these simulations, even at the largest drift angles. Additionally,

the outlet boundary is placed at a distance of three lengths away from the SUBOFF

model following the CFD techniques of other studies [55, 56, 48]. The following figure

illustrates the simulation domain for the single vehicle simulations.

Figure 3-2: CFD domain of the SUBOFF hull simulation. Each wall is at least one
vehicle length of separation from the model while the outlet boundary is three vehicle
lengths of separation.

Additionally, symmetry is used to reduce the necessary size of the domain. This halves

the time to complete the simulation, which enables twice the number of simulations

that could be run for a given computational cost constraint. Because the SUBOFF

model is axisymmetric, the domain size could be drastically reduced by only exam-

ining a small wedge about the model axis. However, when a second axisymmetric

vehicle is added to the domain, there is only one plane of symmetry between the two

vehicles. This is the plane which contains the axes of both vehicles. As such, the

domain is limited to only one plane of symmetry which cuts the model in half. This

ensures consistency with the two vehicle simulations performed in this thesis. The

domain wall that intersected the SUBOFF model is assigned a symmetric boundary

condition in order to capture the physics of the full model. All resulting forces and

moments determined from the simulation are appropriately doubled to account for
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the full model, rather than the half model within the domain. The following figure

illustrates the domain symmetry.

Figure 3-3: The CFD simulation domain utilizes symmetry to only model half of the
vehicle in order to reduce the computational expense of the simulation.

3.3.3.2 Mesh

The mesh of the single vehicle CFD simulation is established to ensure that it met the

necessary criteria to obtain accurate results according to various sources in literature.

The density of the cells in this mesh near and within the boundary layer around

the vehicle are much higher than around the edges of the domain. This because high

fidelity is needed to accurately model the boundary layer around the vehicle compared

to the far away bulk flow characteristics. According to mesh independence studies,

a cell count of at least 1.2 million cells is needed in a domain of this size that does

not utilize symmetry to in order to create accurate results [57, 55, 56]. The meshing

techniques used in this thesis resulted in about 1.1 million cells, meaning it has the

same resolution as a mesh with 2.2 million cells in a domain where symmetry is not

utilized. This is well within the necessary cell count to provide accurate results.

This simulation setup uses an unstructured mesh because it more easily accommo-

dates mesh deformation and restructuring [3]. This robust setup is particularly useful

because of how these methods will ultimately be used to simulate a UUV which will

be scaled and repositioned in multiple scenarios around a submarine. An unstruc-

tured mesh approach has also been found to be just as accurate as a structured mesh

[58]. Additionally, in order to increase the resolution around the SUBOFF model, the

surface growth rate is set to the cells size grow at a slower rate as they move away

from the SUBOFF model. This technique better captures the physics of the flow

81



around the hull and improves the accuracy of the simulation [3]. The figure below

shows a cross section of the mesh used for this simulation setup.

Figure 3-4: Cross section of the mesh used to validate the CFD simulation methods
for the SUBOFF model.

3.3.3.3 Boundary Layer and Turbulence Modeling

Based on recommendations from the ITTC, two-equation turbulence models are by

far the most common models that are applied to ship hydrodynamics and have con-

sistently provided accurate predictions. This includes the k-𝜀 and k-𝜔 turbulence

models. While there are more complex turbulence models, like the most classically

complete Baseline Reynolds Stress Model (BSLRSM), they come at a much higher

computational cost with only a small improvement in accuracy when compared to

the two-equation turbulence models. For this reason, the vast majority of CFD sim-

ulations in literature use the two-equation turbulence models [54]. These different

turbulence models have different required boundary layer modeling criteria recom-

mended by the ITTC. The k-𝜔 Shear-Stress Transport (SST) turbulence model is a

modified set of equations that can be used to interpolate between these two models

when the simulation falls in between these two criteria. For this simulation, the k-𝜔

turbulence model is selected because it is more accurate in adverse pressure gradients

like those experienced on the stern of the model [54, 59]. In order to ensure accuracy,

this CFD simulation setup establishes the boundary layer according to the ITTC k-𝜔

criteria so that there is no need to apply the k-𝜔 SST model. However, STAR-CCM+
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also provides backup to the user by applying the k-𝜔 SST trubulence model in the

event that this criteria is failed to be met. The total boundary layer thickness 𝛿 is

determined using Prandtl’s turbulent boundary layer thickness over a flat plate

𝛿 = 0.16𝐿/𝑅𝑒
1/7
𝐿 (3.10)

where 𝐿 is the length of the vehicle and 𝑅𝑒𝐿 is the Reynolds number for this character-

istic length. This boundary layer mesh is set up using prism layers with an expansion

ratio of 1.2. The following figure illustrates the boundary layer mesh.

Figure 3-5: Cross section of the boundary layer mesh used to validate the CFD
simulation methods for the SUBOFF model.

In order to satisfy the ITTC criteria for the k-𝜔 turbulence model, the non-dimensional

wall distance 𝑦+ has to be less than one at all points along the model. The figure be-

low shows the value of 𝑦+ along the surface of the SUBOFF model. This demonstrates

that the ITTC criteria is satisfied.
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Figure 3-6: Non-dimensional wall distance 𝑦+ across the surface of the SUBOFF
model. This meets the requirement of being less than one at each point around the
vehicle [54].

On average, the 𝑦+ value along the model is about 0.15 with a maximum of 0.21.

This meets the ITTC criteria which ensures that the boundary layer thickness on

the vehicle is thin enough to allow the k-𝜔 turbulence model to accurately model

real-world physics.

3.3.3.4 Angled Vehicle Simulation

In order to accomplish the objective of this thesis of creating a surrogate model

capable of predicting the hydrodynamic interactions between a UUV and submarine,

the forces and moments of a UUV which is at a non-zero heading angle 𝜓 need to be

determined. Before the effects of the hydrodynamic interactions caused by the non-

zero heading angle can be determined, the effects of varying the UUV heading angle 𝜓

need to be validated on a single vehicle. Again, the DARPA SUBOFF model is used

to simulate the forces and moments on the vehicle at various heading angles because

of the readily available EFD data on this model. Multiple simulations are conducted

and various heading angles up to 10.05 degrees. Overall, the same domain and mesh

setup outlined in sections 3.3.3.1 and 3.3.3.2 is used on the angled vehicle simulation.

The ITTC procedure recommends increasing the distance between the model and

the inlet to 10 model lengths and the distance between the outlet and the model to

20 model lengths if significant lift forces are expected [54]. CFD simulations were

conducted in order to see if enough lift force was generated to warrant this much

larger domain. Two CFD simulations were conducted with the vehicle at a 10.05

degree heading angle, one with the domain size listed in figure 3-2 and one with this
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significantly larger domain. This provided a means to determine if the forces caused

the results to differ between the standard and much larger domain. The surge 𝑋 and

sway 𝑌 forces and yawing moment 𝑁 were only about 0.3% different between the

large and small domain so the smaller domain was used to conserve computational

resources for future simulations. The following figures show a cross section of the

mesh and boundary layer mesh for the angled vehicle simulation.

Figure 3-7: Cross section of the mesh used to validate the CFD simulation methods
for the angled SUBOFF model.

Figure 3-8: Cross section of the boundary layer mesh used to validate the CFD
simulation methods for the angled SUBOFF model.
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Just like simulations at a zero degree heading angle, the non-dimensional wall distance

𝑦+ for the angled simulations are verified to ensure that they followed the ITTC

recommendations. The average 𝑦+ value was about 0.15 with the maximum being

0.202. The figure below shows the 𝑦+ values along the surface of the angled SUBOFF

model are within the ITTC requirements.

Figure 3-9: Non-dimensional wall distance 𝑦+ across the surface of the SUBOFF
model. This meets the requirement of being less than one at each point around the
vehicle [54].

3.3.3.5 Results and Validation

Due to the aforementioned symmetry of the CFD simulation domain, the simulation

approach is reduced from a 6 DOF system to a 3 DOF system. In this 3 DOF setup,

the heave force 𝑍, roll 𝐾, and pitch 𝑀 moments are zero leaving only the surge 𝑋,

sway 𝑌 , and yaw 𝑁 as non-zero values. Additionally, because the SUBOFF model at

a zero degree heading angle is laterally symmetric to the incoming flow, the sway force

and yaw moment are both zero. This leaves only the surge force acting on the model.

The following table shows the results of the zero degree heading angle SUBOFF CFD

simulation compared to published EFD results, including the non-dimensional surge

force coefficient (𝑋 ′) [52]. The percent error between the CFD and EFD results is

2.06% which validated that the CFD simulation is able to accurately predict the

forces on the zero degree heading angle SUBOFF model. These results are especially

important because they validate the ability of the CFD simulation to accurately

predict the drag due to skin friction caused by the viscosity of the fluid.
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Table 3.1: Validation of CFD against EFD results of a zero degree heading angle
SUBOFF model [52].

Model Speed CFD 𝑋 CFD 𝑋 ′ EFD 𝑋 EFD 𝑋 ′ % Error

SUBOFF 3.05 m/s −85.6 N −9.75x10−4 −87.4 N −9.95x10−4 2.1%

The hydrodynamic interactions of a UUV at a non-zero heading angle operating

in close proximity to a submarine is a part of the solution space that is yet been

explored using EFD [3]. Therefore, validating the forces and moments on a single

body submersible at a non-zero heading angle is a critical intermediate step to ensure

that the CFD simulation techniques can accurately reflect the results from non-zero

heading angles using real-world EFD. Many simulations are performed at different

heading angles and validated against published EFD results [51]. The figure below

shows the force and moment coefficients at various heading angles 𝜓.

Figure 3-10: Comparison of CFD and EFD results of the surge 𝑋 ′, sway 𝑌 ′, and yaw
𝑁 ′ coefficients versus heading angle 𝜓 of the SUBOFF model.

Figure 3-10 shows that the CFD simulations of the angled SUBOFF model are val-

idated by the EFD results. The difference between the CFD and EFD results are

within single digit percent error with the exception of the sway force coefficient at
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larger heading angles. The EFD results did not contain any uncertainty analysis for

the unappended SUBOFF model, but they provided an approximate margin of error

of about 4-10% on other SUBOFF model configurations [51]. Additionally, other lit-

erary sources estimate the uncertainty of this EFD data at 10%. This means that the

CFD results are within the uncertainty of the EFD specified results [19, 60]. As the

heading angle increases, so does the error of the sway coefficient between the CFD

and EFD results. This finding is consistent with other results found in literature [48].

Also, a UUV performing L&R operations from a submarine is unlikely to have the

UUV at large heading angles because this will cause unwanted rapid movements. For

these reasons, this thesis did not further investigate heading angles 𝜓 larger than 10

degrees. Additionally, the percent error of the sway force coefficient 𝑌 ′ at 2.08 degrees

is also very large. However, this is much less of a concern because of the small value of

the force. The sway force experienced at very shallow angles is close to zero so small

errors in the magnitude of the force result in large percent errors. Because the motion

of the UUV is dependent on the magnitude of the sway force rather than the percent

error, the small total error between the very shallow angle CFD and EFD results is

acceptable, even with a larger percent error. The table below shows the percent error

of between the CFD and EFD results for each force and moment coefficient.

Table 3.2: Validation of CFD against EFD hydrodynamic coefficients for SUBOFF
model at various heading angles [51].

𝜓 CFD (x10−3) EFD (x10−3) Error (%)

(deg) 𝑋 ′ 𝑌 ′ 𝑁 ′ 𝑋 ′ 𝑌 ′ 𝑁 ′ 𝑋 ′ 𝑌 ′ 𝑁 ′

2.08 -0.962 0.213 0.473 -1.045 0.134 0.517 7.92 59.5 8.52

4.07 -0.964 0.452 0.916 -1.061 0.449 0.996 9.13 0.78 8.04

6.03 -0.966 0.760 1.329 -1.059 0.886 1.385 8.77 14.2 4.06

8.00 -0.968 1.189 1.709 -1.069 1.536 1.708 9.41 22.6 0.08

10.05 -0.966 1.796 2.062 -1.049 2.450 2.008 7.94 26.7 2.67

Overall, the methods used in these CFD simulations are able to accurately predict
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the forces and moments experienced on a single vehicle at zero and non-zero heading

angles. The next step of this thesis is to expand these CFD simulation methods in

order to capture the hydrodynamic interactions between two vehicles and validate

these multiple vehicle simulations against EFD data.

3.3.4 Multiple Vehicle CFD Simulation

3.3.4.1 Domain

The domain of the CFD simulations with two vehicles is similar to that outlined in

section 3.3.3.1. The domain is made symmetric about the plane that intersects the

axes of the two vehicles. This means that the forces and moments are simulated on half

of the vehicles and then doubled to account for the forces and moments experienced

on the full bodies. This allows the domain to be half the size of a domain that does

not take advantage of this symmetry. The utilization of this symmetry ultimately

reduces the required computational time to run a CFD simulation and allows for

a more robust exploration of the surrogate model solution space by enabling more

simulations to be performed.

The ITTC guidelines are not tailored for studies involving multiple bodies, but a

conservative approach is taken to ensure that the minimum distance between the

domain boundaries and vehicles is maintained according to ITTC recommendations

[54]. The same domain is used for each simulation, even as the UUV is repositioned for

different simulations. The domain is made large enough to account for the appropriate

spacing, even as the UUV is repositioned between simulations. The following figure

shows the design of the domain for the two vehicle CFD simulations.
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Figure 3-11: CFD domain of the two vehicle simulation. Each wall is at least one
vehicle length of separation from the most extreme positions of the UUV, while the
outlet boundary is three vehicle lengths of separation.

3.3.4.2 Mesh

The mesh of the CFD simulation is designed to comply with a mesh independence

study in the literature in order to ensure that the results are accurate [3]. This mesh

independence study shows that at 3.9 million cells and above, the force and moment

predictions are within 2% of the finest mesh investigated. This domain did not take

advantage of the symmetry of the problem, meaning that the same mesh resolution

is reached at about 1.9 million cells for the symmetric domain in this thesis. Also,

this mesh independence study is also for a much larger domain than used in this

thesis, meaning that a higher resolution mesh is achieved with fewer cells. As such,

1.9 million cells is set as the threshold for the mesh cell count.

This simulation setup uses an unstructured polyhedral mesh because it more easily

accommodates mesh deformation and restructuring as the UUV is repositioned be-

tween simulations [3]. Once again, the resolution around the Explorer and SUBOFF

models is increased by reducing the surface growth rate of the mesh to better cap-

ture the flow around the hull. The figure below shows the basic mesh of one of the

simulations.
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Figure 3-12: Cross section of the mesh used to validate the CFD methods for the two
vehicle simulations. This sample mesh is with the UUV located at 𝑅𝐿𝑎𝑡 = 0.21 and
𝑅𝐿𝑜𝑛𝑔 = 0.234.

3.3.4.3 Boundary Layer and Turbulence Modeling

For the reasons outlined in section 3.3.3.3, these simulations use the k-𝜔 turbulence

model because of its accuracy and low computational cost. The boundary layer is

developed according to the ITTC procedures [54]. Per the recommendation of the

Leong, the total boundary layer thickness is set two twice the Prandtl’s turbulent

boundary layer thickness outlined in equation (3.10) [3]. This is doubled from that

in section 3.3.3.2. The additional thickness of the boundary layer mesh provides

a higher resolution mesh farther away from the boundary, which provides a better

opportunity for the prism layer mesh to capture the flow in this area of interest. This

boundary layer mesh for each vehicle has an expansion ratio of 1.2. The following

figure illustrates the boundary layer meshes for the two vehicle simulations.
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Figure 3-13: Cross section of the boundary layer mesh used to validate the CFD
methods for the two vehicle simulations. This sample mesh is with the UUV located
at 𝑅𝐿𝑎𝑡 = 0.21 and 𝑅𝐿𝑜𝑛𝑔 = 0.234.

The non-dimensional wall distance 𝑦+ values along the boundary of the submarine

and UUV models are determined in order to ensure that they are less than one in

accordance with the ITTC guidelines [54]. The figure below shows that the 𝑦+ values

at every point along the boundary of these two models is within these guidelines.

Figure 3-14: Non-dimensional wall distance 𝑦+ across the surface of the two vehicles.
This meets the requirement of being less than one at each point around the vehicles
[54].

On average, the 𝑦+ value along the model is about 0.1 with a maximum of 0.16.
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This meets the ITTC criteria which ensures that the boundary layer thickness on

the vehicle is thin enough to allow the k-𝜔 turbulence model to accurately model

real-world physics.

3.3.4.4 Results and Validation

The EFD data that could be used to validate these CFD results is very limited.

The EFD experiments are performed by Leong at a submarine to UUV diameter

ratio of 2.239 and various longitudinal positions [3]. Leong is able to create EFD

experiments to measure the surge and sway forces and yawing moment on the UUV.

The experimental uncertainty of the study is 2.252×10−4 for the surge 𝑋 ′ and sway

𝑌 ′ coefficients and 1.446×10 − 4 for the yaw coefficient 𝑁 ′. However, due to the

limitations of the physical two tank facilities and model sizes, these EFD results are

influenced by the blockage or restricted water effect. The walls of the tow tank are

close enough to the models that the presence of the wall limits the ability of the water

to flow freely around the models. This has an impact on the measured forces and

moments. When Leong performs his CFD simulations, he is able to model the tow

tank walls into the domain of his CFD simulations. When accounting for the tow tank

walls in the CFD simulations, the CFD is able to accurately predict the measured

forces and moments within the experimental uncertainty. In order to determine the

forces and moments without the restricted water effects, Leong expands his CFD

domain and removes the tow tanks walls from his simulation. By removing the tow

tank walls from the CFD studies, the assumption is made that his CFD simulations

are still able to capture the real world physics between the submarine and UUV model

because no changes are made to this portion of the simulation. As such, Leong’s CFD

results with no blockage or restricted water effects are considered to be valid. The

figure below shows the results of this CFD setup used in this research plotted beside

Leong’s EFD results. The error bars on Leong’s results indicate the experimental

uncertainty of his tow tank tests.
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Figure 3-15: Comparison of CFD and EFD results of the surge 𝑋 ′, sway 𝑌 ′, and yaw
𝑁 ′ coefficients versus longitudinal separation ratio 𝑅𝐿𝑜𝑛𝑔 of the two vehicles [3].

As seen in figure 3-15, the CFD results of this study are within the experimental

uncertainty of Leong’s EFD results. The CFD simulations are able to capture the

large degree of change in the hydrodynamic coefficients as the longitudinal position

of the UUV is varied. Putting all of this together, the methods and setup of the

CFD simulations used in this research are valid across all of the limited available

data.

No EFD data is available for experiments where a UUV at a non-zero heading angle is

operating in close proximity to a moving submarine. As such, no validation could be

performed for this specific set of the CFD simulations explored in this study. However,

the CFD results for a single UUV at a non-zero heading angle and the CFD results

for a UUV at a zero degree heading angle operating in close proximity to a moving

submarine were both validated against EFD data. For this reason, the CFD methods

are still assumed to be accurate enough to continue with this research, even though

they could not be experimentally validated.
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3.4 Potential Flow

3.4.1 Governing Equations

Potential flow is another approach to solving the governing equations (3.7) and (3.6)

by making some additional assumptions. In addition to assuming that the flow is

incompressible, the flow is also assumed to be inviscid, i.e. 𝜈 = 0. Assuming both

incompressible and inviscid fluid is often called ideal flow. The last assumption made

is that the flow is irrotational, i.e the vorticity �⃗� = ∇ × �⃗� = 0. This means that

a scalar velocity potential function 𝜑(�⃗�, 𝑡) exists such that �⃗� = ∇𝜑. Substituting

this in the continuity equation (3.7) results in the following governing equation for

P-Flow.

∇2𝜑 = 0 (3.11)

This reduces the system of governing equations to one equation and one unknown

𝜑(�⃗�, 𝑡). Once the velocity potential is known, it can be integrated to solve the velocity

�⃗�(�⃗�, 𝑡). Due to the assumptions made about the fluid, the fluid velocity and pressure

𝑃 are decoupled and dependent so the pressure can be found using the following

Bernoulli equation.

𝑃 = −𝜌
(︂
𝜕𝜑

𝜕𝑡
+

1

2
|∇𝜑|2 + 𝑔𝑧

)︂
+ 𝐹 (�⃗�, 𝑡) (3.12)

These P-Flow equations are much simpler and can be solved nearly instantaneously

in many cases. However, the fluid assumptions result in well known errors. Potential

flow fails to capture any of the viscous drag or flow separation along a non-lifting body

moving through a fluid at a constant velocity. This means that P-Flow infamously

predicts zero drag on a UUV moving at constant velocity and suggests that the body

will perpetually move forward [14]. This is known as the d’Alembert paradox.
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In order to overcome this shortcoming, many P-Flow solvers have built-in empirical

formulas used to estimate the drag on a vehicle in steady translation. A commercially

available potential flow solver known as FS-Flow is used for this research. In order to

provide more accurate results, the ITTC-57 parametric equations are selected within

the FS-Flow potential flow solver to estimate the drag of the UUV [27].

3.4.2 Results and Validation

In order to validate the potential flow solutions, the same series of P-Flow simulations

is run as the CFD simulations for figure 3-10, which is a single body submersible at a

non-zero heading angles. Simulations are performed at different heading angles and

validated against published EFD results [51]. The figure below shows the force and

moment coefficients at various heading angles 𝜓.

Figure 3-16: Comparison of P-Flow and EFD results of the surge 𝑋 ′, sway 𝑌 ′, and
yaw 𝑁 ′ coefficients versus heading angle 𝜓 of the SUBOFF model.

As seen in figure 3-16, the P-Flow method fails to capture the sway force experienced

by the UUV at a non-zero heading angle. Again, this is a demonstration of the

d’Alembert paradox and limitation of P-Flow. However, the P-Flow solver does much
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better at predicting the surge and yaw of the vehicle. The surge is relatively accurate

because FS-Flow uses built-in ITTC-57 parametric equations to estimate the drag of

the UUV [27]. Additionally, the P-Flow solution tends to slightly over-predict the

yaw moment experienced by the vehicle. In P-Flow, this moment is known as the

munk moment [14]. The munk moment tends to over-predict the yawing moment on

the vehicle because the real vehicle experiences flow separation at its trailing edge.

This means there is lower pressure on the trailing edge which results in a lower yawing

moment. Overall, the P-Flow results are much less accurate than the CFD simulations

shown in figure 3-10. Due to these limitations, P-Flow is not a great candidate to be

used to predict the hydrodynamic interactions of a UUV for the purpose of simulation

UUV maneuvering. However, when the munk moment dominates the motion of the

UUV, sway has negligible impact on UUV motion, and drag can be estimated using

parametric equations, P-Flow provides a reasonable means of predicting the forces

and moments on a UUV.

3.5 Evaluation of One-Way Assumption

UUV maneuvering simulators have been developed using linearized six DOF equations

of motion derived from Newton’s second law [15, 61]. These equations determine the

surge 𝑋, sway 𝑌 , and heave 𝑍 forces, as well as the roll 𝐾, pitch 𝑀 , and yaw

𝑁 moments acting on a vessel by determining a series of maneuvering coefficients

for the vessel. These coefficients represent the forces and moments as a function

of the product of the six DOF linear or angular velocities or their time derivatives.

By describing the forces and moments in this way, this enables the maneuvering

simulators to model the relationship between the forces and motion of the vehicles by

accounting for these coefficients and the vehicle inertial properties, i.e mass, added

mass, and moment of inertia. Because of the usefulness of simulating UUV motion

in this manner, UUV hulls are routinely analyzed to determine these coefficients.

This can be done through EFD, high-fidelity CFD modeling, or low-fidelity boundary

element method (BEM) potential flow modeling.
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Simplified UUV maneuvering simulations have been developed to predict how UUV

motion will be impacted when operating near a moving submarine. These simulators

use “one-way” assumptions to simplify this interaction. First off, the simulators de-

termine the flow field around the submarine from the results of a CFD simulation.

The figure below shows the velocity profile around a full-sized 34 foot diameter model

of the unappended SUBOFF hull moving forward at five knots [49].

Figure 3-17: Fluid velocity profile around a full-sized 34 foot (10.36 m) diameter
model of the unappended SUBOFF hull moving forward at five knots (≈ 2.6 m/s).

This simplified UUV maneuvering simulation approach assumes the UUV will expe-

rience the same flow vector shown in figure 3-17 based on its location in the velocity

field. This assumption only requires that one CFD simulation needs to be run around

the submarine in order to completely resolve the velocity profile around the subma-

rine. The main advantage of the one-way assumption is that it is computationally

inexpensive to only run one CFD simulation and use the results to determine the

resulting forces on the UUV at any position or heading around the submarine. Be-

cause the maneuvering coefficients are known and constant for a given vehicle, the

simulator can use the standard equations of motion combined with the velocity profile

to simulate how the UUV will be affected by the presence of the submarine. How-

ever, the disadvantage of the one-way assumption is that it only accounts for how the

presence of the submarine impacts the flow field while neglecting how the presence
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of the UUV impacts the flow field. The figure below illustrates the flow field of the

one-way assumption. The UUV shown is a scaled model of the Explorer AUV that is

about the size of a Trident II D-5 missile. This represents the upper end of the UUV

size that could fit in a Virginia Payload Tube (VPT) [53, 62].

Figure 3-18: Fluid velocity profile of the two vehicles using the one-way assumption.
The presence of the UUV has no impact on the fluid velocity profile.

While this one-way assumption allows the UUV motion to be simulated, it neglects

how the presence of the UUV itself impacts the flow field and how the resulting forces

impact the UUV motion. The fluid velocity profile with no influence from the UUV

is illustrated in figure 3-18. This figure shows how the flow slows and moves around

the bow of the submarine but not the UUV. When the impact of the UUV on the

flow field is taken into account, it captures the real-world physics of the hydrodynamic

interaction between the two vehicles. Figure 3-19 shows how the presence of the UUV

impacts the flow field compared to the one-way assumption.
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Figure 3-19: Fluid velocity profile of the two vehicles. The presence of the UUV has
an impact on the fluid velocity profile compared to the one-way assumption outline
in figure 3-18.

As seen in the figures 3-18 and 3-19, the one-way assumption fails to account for

the complete hydrodynamic interaction between the two vehicles because it neglects

the impact of the UUV in the flow field. In order to determine the real-world hy-

drodynamic interaction between the two vehicles, a new CFD simulation needs to

be performed each time that the UUV changes position, heading, or speed. Because

CFD simulations are computationally expensive, they cannot be solved in real-time

nor can enough simulations be run to completely resolve the possible domain of all

UUV positions, headings, and speeds. This is the major hurdle that has prevented

the real-world hydrodynamic interactions from being incorporated into UUV motion

simulators. This makes the one-way assumption one of the only techniques to model

hydrodynamic interactions in UUV simulators, but this approach often leads to sig-

nificant errors and inaccurate UUV motion simulations.

There are many instances when this one-way assumption may be appropriate. In

the example above, the UUV is laterally far enough away from the submarine that

the flow between the vehicles is relatively unobstructed. The impacts of the flow

obstruction near the UUV does not reach the submarine. When the UUV is positioned

close enough to the submarine that the flow around the UUV is influenced by the
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submarine, this results in real-world hydrodynamic interactions that the one-way

assumption fails to predict. Figure 3-20 shows how the velocity field is impacted

when the UUV moves close to the submarine.

(a) Fluid velocity profile around the submarine with the UUV operating close to
its parallel mid-body section.

(b) Fluid velocity profile around the UUV operating close to the parallel mid-body
section of the submarine.

(c) Magnitude of the fluid velocity around the UUV operating close to the parallel
mid-body section of the submarine.

Figure 3-20: Fluid velocity profile of the UUV operating close to the submarine near
the parallel mid-body. The flow around the UUV is influenced by the presence of the
submarine.
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As seen in figure 3-20, more of the flow between the UUV and the submarine is at a

higher velocity than the region on the opposite side of the UUV. This is often referred

to as the restricted water effect. Because the region between the submarine and UUV

has a more restricted area than competing flow paths, the flow acts differently than

if the submarine were not present. In this case, the flow between the vehicles is faster

in order to maintain continuity through a smaller area. Due to the Bernoulli effects,

this higher velocity flow causes a lower pressure region between the vehicles which

results in a sway force that sucks the UUV toward the submarine. This sway force is

not captured using the one-way assumption.

Additionally, the flow in this region along the parallel mid-body of the submarine

is relatively uniform, just like when the maneuvering coefficients are determined for

a UUV. When the flow becomes non-uniform, as it does near the bow and stern of

the submarine, this causes different portions of the UUV to experience different flow

velocities. This non-uniform flow also causes the one-way assumption to break down

and become inaccurate. The following figure is an example of where the UUV is

near the bow of the submarine. In this position, the UUV experiences a non-uniform

flow.

(a) Fluid velocity profile around the bow of the submarine. If the UUV is present,
it experiences a non-uniform flow.
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(b) Fluid velocity profile around the UUV operating near the bow of the submarine.

Figure 3-21: Fluid velocity profile of the UUV operating close to the submarine bow.
The non-uniform flow and restricted water effects cause inaccuracies using the one-
way assumption.

Figure 3-21 shows how the flow around the bow of the submarine is highly non-

uniform. Flow velocity varies in both magnitude and direction based on the location

of the flow around the bow of the submarine. If a UUV is to be positioned in the

region outlined above, the bow of the UUV would experience a more tangential and

slower velocity than the stern of the UUV due to how the flow moves along the

bow of the submarine. Because the one-way assumption only accounts for a uniform

flow, this will not be able to account for how the bow and stern of the UUV will

experience different forces than if the flow is uniform. In order to illustrate the

potential breakdown of the one-way assumption, a few example cases are analyzed.

In each case, the surge force coefficient 𝑋 ′, sway force coefficient 𝑌 ′, and yawing

moment coefficient 𝑁 ′ of the UUV are determined using CFD for both the one-way

assumption and the unassumed hydrodynamic interaction. Figure 3-22 shows the

different positions of the UUV for each case.

103



Figure 3-22: These four cases are used to evaluate the accuracy of the one-way as-
sumption.

Table 3.3 lists the results of the one-way assumption method and the unassumed CFD

simulation of the hydrodynamic interactions for the different cases outlined in figure

3-22. This table also provides the percent error of the one-way assumption from the

unassumed hydrodynamic interaction.

Table 3.3: Comparison of the one-way assumption against the unassumed CFD
hydrodynamic interactions.

C
as

e

One-Way CFD Hydrodynamic Error

Assumption (x10−4) Interaction (x10−4) (%)

𝑋 ′ 𝑌 ′ 𝑁 ′ 𝑋 ′ 𝑌 ′ 𝑁 ′ 𝑋 ′ 𝑌 ′ 𝑁 ′

1 -16.55 0.015* 0.119 -16.59 -0.857* 0.083 0.2 102* 44.5

2 -16.54 0.162* 0.369 -16.91 -4.289* 0.441 2.2 104* 16.4

3 -16.44 7.926* 20.60 -28.95 -18.77* 21.12 43.2 142* 2.5

4 -16.41* -10.21 -25.64 8.741* -54.87 -30.69 288* 81.4 16.5

* Denotes a change in direction of force between the two methods
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The one-way assumption shows significant error in most of these cases. While case

one has a large percent error in the sway force coefficient between the two methods,

the magnitude of this force is relatively small so the actual motion of the UUV

would not be as large as the percent error suggests. In the other cases, the percent

error is very large while the magnitude of the force is also large, indicating that

the difference between the UUV motion simulation using these two methods would

be substantial. In many instances, the actual forces experienced by the UUV when

accounting for the complete hydrodynamic interactions are an order of magnitude

higher than the one-way assumption results. Not only are there large differences

between these two methods, but they also frequently differ in direction, especially for

sway. This means that in many circumstances, the one-way assumption would instruct

the UUV to steer the rudder in one direction to overcome the impact of the flow

around the submarine to stay on course while the actual hydrodynamic interaction

would dictate the rudder move in the opposite direction. This provides problems for

developing accurate launch and recovery simulations using the one-way assumption.

In summary, by using a one-way assumption, only one CFD simulation is needed in

order to completely determine the flow field around the submarine and create a UUV

motion simulator. This greatly reduces the computational requirements to simulate

UUV maneuvering near a submarine, but this assumption fails to model the real-

world physics. To capture the actual hydrodynamic interactions between the UUV

and submarine, a CFD simulation needs to be performed every time that the UUV

is repositioned or reoriented. This has been the major hurdle as to why these effects

have not been implemented into UUV maneuvering simulators. An infinite number

of CFD solutions would be required to completely resolve the maneuvering space.

One approach could be to create a library of CFD simulations that allow the UUV

maneuvering simulator to look up a required solution. However, the computational

effort to create a library of the necessary size to saturate the maneuvering space is

unfeasible. Another approach could be to reduce CFD computational times to near

real-time. UUVs go through their control loops feedback cycles multiple times per

second. This means that CFD simulation times would need to be reduced from days
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to fractions of a second in order for this approach to be viable. This greatly exceeds

the computational capacity of the hardware that can be stored on a UUV. Overall,

the hydrodynamic interactions between these two vehicles need to be determined in

real time in order to incorporate them into a UUV maneuvering simulator. Using

machine learning to bridge this capability gap provides the most promising approach

to this problem.

3.6 Conclusion

Using CFD to computationally model the hydrodynamic interactions between a sub-

marine and UUV is a valid approach. When setting up a CFD simulation, there are

many variables that need to be correctly selected in order to receive a valid result.

Some of these include domain size, mesh resolution, boundary layer resolution, and

various turbulence models. The CFD simulations are set up using ITTC guidelines

and validated against real-world EFD tow tank experiments. The CFD is able to

accurately predict the forces and moments on the real-world UUV in all of the dif-

ferent scenarios in which EFD validation data is available. This includes zero-degree

heading angle single body UUV, non-zero degree heading angle single body UUV, and

hydrodynamic interactions between a UUV and submarine. While the CFD setup has

been validated, it is still much too expensive to be evaluated in real time in order to

be incorporated into a UUV maneuvering simulator.

Potential flow is unable to accurately capture all of the desired forces and moments

experienced by the UUV. For P-Flow, the munk moment from the potential flow

results is reasonably close to the actual yawing moment of the UUV at small head-

ing angles. Likewise, the ITTC-57 parametric equations can supplement P-Flow to

predict the vehicle surge quite accurately. However, the P-Flow results are unable to

capture the sway force of the UUV at small heading angles due to the d’Alembert

paradox.

The one-way assumption is when the velocity profile around the submarine is com-
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pletely resolved using CFD as if the UUV is not present. Next, this profile is used to

predict the hydrodynamic interactions by determining the forces and moments on the

UUV as if it is only experiencing this flow with no other hydrodynamic influences.

This assumption produces errors that make it a poor candidate to computationally

model the hydrodynamic interactions in real time for the purpose of UUV maneuver-

ing simulation.
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Chapter 4

Reduced Order Modeling of

Hydrodynamic Interactions between

a UUV and Submarine

4.1 Introduction

Several efforts have been dedicated to predicting the hydrodynamic interaction forces

and moments experienced by a UUV as it operates near a moving submarine [3, 19,

63, 13]. However, there is no method at the moment that allows for real-time compu-

tational modeling of all the complex hydrodynamic interaction forces and moments

that a UUV experiences at different positions and orientations around the submarine.

This real-time modeling of these hydrodynamic interactions is essential to simulate

the motion required to launch and recover UUVs from submarines. UUV control

and autonomy systems iterate multiple times a second in order to adjust the control

surfaces and thrust of the vehicle based on its updated position, heading, and speed.

Potential flow models are often fast enough to be used in real time, but lack the

accuracy of CFD simulations, which often take hours or days to solve. The goal of

this thesis is to overcome this technological gap by developing a reduced order model
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(ROM) capable of predicting the UUV and submarine hydrodynamic interactions in

real time using a very small number of carefully selected CFD simulations.

This chapter explains the experimental design of the ROM beginning with selecting

which inputs are used to develop the surrogate model. Next, a detailed account

of how the Gaussian Process (GP) regression model and non-myopic multi-fidelity

(NMMF) active learning algorithm are used . This chapter concludes with the results

of the ROM output, including the generation of force and moment maps, comparison

to known tow tank hydrodynamic interaction results, and validation of the ROM

against test data.

4.2 Input Variables

In order to simulate the motion of the UUV, a body-fixed coordinate system is estab-

lished at the center of buoyancy of the UUV. The surge, sway, heave, roll, pitch, and

yaw velocities and forces/moments are defined as 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟 and 𝑋, 𝑌, 𝑍,𝐾,𝑀,𝑁

respectively. The position of the UUV is expressed in the inertial reference frame

using 𝑥, 𝑦, and 𝑧. Likewise, the roll, pitch, and yaw angles are denoted as 𝜑, 𝜃, and

𝜓. The distances between the center of buoyancy and the center of gravity of the

UUV in the three principle directions are defined as 𝑥𝑔, 𝑦𝑔, and 𝑧𝑔. This coordinate

system is illustrated in figure 5-1.

Figure 4-1: Orientation of UUV body-fixed and inertial coordinate systems with their
corresponding velocities, forces, and moments [64]

.
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UUV maneuvering simulators uses three different vectors to relay information between

modules within the simulator. These three different vectors are the state vector x,

input vector u, and desired state vector xd and are listed in equation (5.1). The

propeller thrust and torque are denoted as 𝑋𝑃𝑟𝑜𝑝 and 𝐾𝑃𝑟𝑜𝑝 respectively while the

rudder and stern plane angles are denoted as 𝛿𝑟 and 𝛿𝑠 respectively.

x = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓]𝑇

u = [𝑋𝑃𝑟𝑜𝑝, 𝐾𝑃𝑟𝑜𝑝, 𝛿𝑟, 𝛿𝑠]
𝑇

xd = [𝑢𝑑, 𝑧𝑑, 𝜓𝑑]
𝑇

(4.1)

Existing UUV maneuvering simulators use the vectors in equation (4.1) to simulate

the UUV closed-loop autonomy and control system and its impact on UUV motion [64,

65, 66]. Simulators use an autonomous behavior module which takes the state vector

of the UUV at a given point xt as an input and returns the desired state vector xd,t

containing the UUV desired speed, desired depth, and desired heading. This desired

state vector is fed into the control module which uses control theory to determine

the input vector ut containing the appropriate propeller thrust and control surface

angles. This input vector and the state vector is then fed to the physics module which

uses the equations of motion to determine the new UUV state vector xt+1. This loop

is iterated along small time steps to simulate the UUV motion.

The UUV simulators take the state vector and input vector as inputs and use non-

linear maneuvering coefficients, i.e. hydrodynamic derivatives, to determine the forces

and moments acing on the UUV [15, 64, 65, 66]. These forces and moments are then

used in the equations of motion in order to determine the new state vector of the

UUV. In order to easily be incorporated into the UUV simulators, the surrogate

model also takes the same state vector as an input and return the hydrodynamic

interaction forces and moments as an output. This means that the input dimension

of the surrogate model relies on the state vector.

111



Many UUV simulations make simplifications to their state vector because it reduces

the complexity and cost of both running simulations and experimentally determining

maneuvering coefficients. Likewise, using fewer input dimensions to the surrogate

model reduces the number of CFD simulations that need to be performed for training

data. For this reason, simplifications are made to the surrogate model to reduce its

dimensionality.

4.2.1 Three Degree of Freedom Simulation

Many simplifications are made to the UUV simulators to reduce the effort needed

to determine all of the hydrodynamic coefficients and focus efforts on improving the

simulation in the most relevant dimensions [15, 64, 66]. The full six DOF of surge,

sway, heave, roll, pitch,and yaw are reduced to three by removing the that roll, pitch,

and heave dimensions. Because many UUVs have similar geometry in the 𝑥𝑦 and 𝑥𝑧

plane, the heave and pitch results are the same as the sway and yaw results [64]. This

means that the effect of heave and pitch can often be determined utilizing symmetry

of sway and yaw rather than increasing the dimension of the simulation. Roll is also

removed from the UUV simulator due to vehicle symmetry and how UUVs have no

control surfaces that account for roll only [64, 66]. These simplifications drastically

reduce the effort to model submarine and UUV hydrodynamic interactions while still

capturing the fundamental behaviors and capabilities. The planar motion for this

three DOF setup is the plane that contains both vehicle axes. For the purposes of

this thesis, the inertial coordinate system is fixed to the center of bouyancy of the

submarine with the bow of the submarine pointing along the positive 𝑥-axis. The

UUV body-fixed coordinate system is positioned such that a positive sway 𝑣 and

heading angle 𝜓 means the UUV is moving away from or rotated with its bow away

from the submarine. Reducing from a six DOF to a three DOF simulation reduces

the state vector to the following set of states.

x = [𝑢, 𝑣, 𝑟, 𝑥, 𝑦, 𝜓]𝑇 (4.2)
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4.2.2 Quasi-Static Simulation

As the UUV changes position, heading, and speed, it experiences different forces and

moments due to the hydrodynamic interactions between the vehicles. For this study,

terms from the simplified state vector in equation (4.2) are used as inputs to the

GP regression model. This allows the surrogate model to predict the hydrodynamic

interactions based on changes to the UUV state vector. The 𝑥 and 𝑦 terms are non-

dimensionalized by the submarine length 𝐿𝑆𝑢𝑏 to in order to determine lateral and

longitudinal separation ratios 𝑅𝑙𝑎𝑡 and 𝑅𝑙𝑜𝑛𝑔 as shown in equations (3.4) and (3.3)

and figure 3-1.

In this UUV simulation and ROM approach, the inertial reference frame is fixed to

the center of buoyancy of the submarine which is moving at a constant speed through

the water. This fluid flow through the inertial frame caused by the submarine moving

forward can be thought of as a current in a traditional earth-fixed inertial frame.

Because of this flow, the sway velocity 𝑣 and the heading angle 𝜓 are not indepen-

dent. This flow means that a non-zero heading angle in the inertial frame results in

a non-zero sway velocity in the UUV body-fixed reference frame, if the UUV is is

in a near steady state. This relationship is valid for small heading angle differences

from the flow direction because the sway velocity is so much smaller than the UUV

surge velocity or submarine velocity and the heading angle has such a large impact

on the sway velocity. This type of setup is referred to as quasi-static because the

forces and moments exerted on the UUV for the dynamic simulation are determined

by simulating the UUV in a steady state i.e. there is no transient or unsteady be-

haviour used in the CFD simulations so only steady CFD simulations are performed.

Quasi-static approaches have been found to be accurate because these transients are

relatively small so they have little impact on the hydrodynamic interactions [3, 13].

In order to analyze UUV transient behaviors, unsteady CFD simulations would need

to be performed. These are much more computationally expensive and there is no

EFD data against which the CFD simulations can be validated. As such, the ROM

only needs to account for the heading angle and not the redundant sway velocity to
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model the hydrodynamic interactions. Recognizing this dependence allows the input

dimension of the surrogate model to be reduced which decreases the number of CFD

simulations that need to be run in order to train the model. This allows for a more

accurate ROM given a fixed amount of computational resources.

For the same reason, the yaw rate 𝑟 is not used as an input to the surrogate model.

Because a UUV is near parallel to the submarine during launch and recovery oper-

ations with no rapid heading changes, the yaw rate is very small compared to other

terms and has negligible impact on hydrodynamic interactions. Not including this

input in the surrogate enables the same quasi-static assumption which allows the

CFD simulations to be steady rather than unsteady. Again, this drastically simplifies

the CFD simulation complexity, decreases the simulation computational time, and re-

duces the number of simulations needed to explore the domain. Overall, by removing

the sway velocity 𝑣 and yaw rate 𝑟 as inputs to the ROM, the overall dimensionality

of the surrogate is reduced to four for a single UUV.

4.2.3 Domain of Input Variables for Surrogate Model

Rather than creating a surrogate model for one specific UUV, this surrogate model

is designed to account for different lengths and diameters of the UUV. This allows

the hydrodynamic interactions between different size UUVs to be explored, rather

than limiting the research to a UUV of one size. This enables better exploration

of launch and recovery options and capabilities for different size UUVs. The di-

ameter of the UUV is non-dimensionalized with the submarine diameter. This is

called the submarine-to-UUV diameter ratio 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 . The length of the UUV is

non-dimensionalized by the diameter of the UUV and is known as the UUV length-

to-diameter ratio 𝐿/𝐷𝑈𝑈𝑉 . By adding these two input dimensions to the ROM, the

surrogate becomes six dimensional. In summary, the six inputs to the ROM are the

longitudinal separation ratio, lateral separation ratio, UUV speed, UUV heading an-

gle, submarine-to-UUV diameter ratio, and the UUV length-to-diameter ratio.

Once the input variables to the ROM are established, the next step is to establish
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the bounds on these inputs. Each input variable has its own unique domain based

on different criteria. The following list provides the rationale for the bounds on the

domain of each input variable.

• Longitudinal separation ratio - In a previous ROM attempts, the bounds of this

variable were set between -1.5 and 1.5 [67]. These bounds were based on the

results of the hydrodynamic interaction forces and moments study from Leong

[3]. However, because real world UUVs are much smaller than those studied by

Leong, this domain was much larger than necessary. This meant that many CFD

simulations were performed beyond the region where hydrodynamic interactions

occur, which is a waste of computational resources. As such, the bounds for

this ROM are set between -0.7 and 0.7 to ensure that CFD simulations better

capture the hydrodynamic interactions.

• Lateral separation ratio - Just like the longitudinal separation ratio, the domain

is reduced from a previous study of larger UUVs. The domain of the lateral

separation ratio is reduced from between 0.064 and 0.65 down to between 0.059

and 0.105 in order to enable the ROM to more accurately model the hydrody-

namic interactions. Focusing on areas closer to the submarine also makes the

study more relevant to the L&R of UUVs.

• UUV speed - The speed of the UUV is varied between 2 and 5 knots (≈1.03 and

≈2.57 m/s). These bounds are based on the maximum speed attainable by most

commercially available UUVs and the minimum speed at which submarines are

operated to maintain controllability [53, 19, 68, 69, 70, 71, 72].

• UUV heading angle - The heading angle is defined as the angle between the UUV

and the axis of the submarine, i.e. the 𝑥-axis of the inertial coordinate system.

A positive heading angle denotes the bow of the UUV is pointed away from

the submarine. Previous efforts set the bounds of the heading angle between

-10 and 10 degrees [67]. However, the magnitude of the forces and moments at

these large angles resulted in inaccuracies. This is because these large angles
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resulted in much larger forces and moments than caused by the hydrodynamic

interactions at zero degree heading angles. The error inherent in the CFD data

became large compared to the magnitude of hydrodynamic interactions. This

low "signal-to-noise ratio" meant that the ROM spent computational resources

trying to resolve the aleatoric uncertainty of the data at large heading angles

rather than reduce the epistemic uncertainty across the domain to resolve the

hydrodynamic interactions. Additionally, these forces and moments at large

heading angles are large enough that they make successful UUV L&R operations

unlikely. As such, the domain of the heading angle is reduced to be between -2

and 2 degrees.

• Submarine-to-UUV diameter ratio - The following table shows a compilation

of different UUV sizes taken from various sources [53, 19, 69, 70, 71, 72]. The

UUV diameters are non-dimensionalized by the Virginia class and Ohio class

submarine diameters.

Table 4.1: Different UUV sizes including the submarine-to-UUV diameter ratio
and the UUV length-to-diameter ratio [53, 19, 69, 70, 71, 72].

Size Name Length Diameter 𝐿/𝐷𝑈𝑈𝑉 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉

(m) (m) (Virginia) (Ohio)

S REMUS 100 1.60 0.19 8.42 54.53 67.37

M REMUS 600 3.25 0.32 10.03 31.98 39.51

L REMUS 6000 3.84 0.71 5.41 14.59 18.03

L HUGIN 1000 4.50 0.75 6.00 13.81 17.07

L HUGIN 3000 5.50 1.00 5.50 10.36 12.80

L HUGIN 4500 6.00 1.00 6.00 10.36 12.80

S Sandshark 1.09 0.12 8.79 83.55 103.23

M Bluefin 12 3.00 0.33 9.09 31.39 38.79

M Bluefin 21 3.30 0.53 6.23 19.55 24.15

M Knifefish 5.80 0.53 10.94 19.55 24.15

M 62 Sapphires 7.00 0.53 13.21 19.55 24.15
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L Autosub 7.00 0.90 7.78 11.51 14.22

S IVER3 1.52 0.15 10.37 70.48 87.07

L Explorer 5.36 0.74 7.24 14.00 17.30

L Snakehead 5.25 1.22 4.30 8.49 10.49

L VPT* 10.00 2.13 4.69 4.86 6.01

*Represents the maximum UUV size that could fit in the Virginia payload tube

In order to account for the vast majority of these submarine-to-UUV diameter

ratios without spending lots of resources chasing outliers, the bounds of this

parameter are set from 5 to 50.

• UUV length-to-diameter ratio - Table 4.1 shows various different 𝐿/𝐷𝑈𝑈𝑉 ratios.

The bounds of this variable is set from 4.3 to 13 in order to reflect the various

UUV designs.

Table 4.2 summarizes each of the six different input variables with their accompanying

units and bounds.

Table 4.2: Input variables and domains for hydrodynamic interaction reduced order
model

Symbol Description Units Bounds

𝑅𝐿𝑜𝑛𝑔 Longitudinal separation ratio None [-0.7,0.7]

𝑅𝐿𝑎𝑡 Lateral separation ratio None [0.059,0.105]

𝑢 UUV speed Knots [2,5]

𝜓 UUV heading angle Degrees [-2,2]

𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 Submarine-to-UUV diameter ratio None [5,50]

𝐿/𝐷𝑈𝑈𝑉 UUV Length-to-diameter ratio None [4.3,13]

As certain bounds are increased, the magnitude of the forces and uncertainty of

the CFD simulations becomes relatively large in some parts of the domain. This phe-

nomena exemplifies the trade-off between exploration and accuracy. Exploring a large
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domain reduces the ability of the model to accurately capture complex hydrodynamic

interactions, while having a small domain more accurate model may be to restrictive

to be useful. The bounds of this domain are selected to capture the wide range of

input variables necessary to simulate UUV motion while being restrictive enough to

produce accurate results.

4.3 Constraints

While the selection of the size of the input domain considers the trade-off between

accuracy and exploration, additional constraints are established to exclude certain

unrealistic or unfeasible parts of the domain based on input variable interactions. For

example, larger diameter UUVs tend to be shorter while smaller diameter UUVs tend

to be longer. Two constraints are created based on real-world UUV measurements

which ignore the combination of UUV lengths and diameters that are infeasible.

Additionally, the relationship between lateral distance from the submarine and the

UUV diameter is constrained. This enables the center of buoyancy of the small

diameter UUVs to get closer to the submarine than a larger diameter UUV. If the

input variables with the given bounds are varied without constraint, the submarine

and UUV could overlap in the extreme parts of the domain, creating an infeasible

simulation. Likewise, UUVs are constrained, based on diameter, to make sure they

are not so far away as to avoid any hydrodynamic interactions. In total, four different

constraints are established to remove infeasible regions of the domain and focus the

ROM to explore the most relevant regions of the domain in order to improve its

accuracy.

A lateral constraint is established to allow the UUV to get very close to the submarine

for simulations. The necessity of a constraint could be avoided by reducing the domain

so all UUVs are farther away. However, because the UUVs vary significantly in size,

this wouldn’t allow the small UUVs to be as close as is desired. Therefore, a lateral

constraint is established that ensures there is clearance 𝑐 between the vehicles as

illustrated in figure 4-2.

118



Figure 4-2: The ROM model is constrained to ensure that there lateral distance
between the vehicles is far enough away to maintain a clearance.

As shown in figure 4-2, the clearance between the two vehicles can be found using the

following equation.

𝑐 = 𝑅𝐿𝑎𝑡𝐿𝑆𝑢𝑏 −
𝐷𝑆𝑢𝑏 −𝐷𝑈𝑈𝑉 cos (𝜓)

2
− (1− 𝐶𝐵𝑈𝑈𝑉 )𝐿𝑈𝑈𝑉 sin (𝜓) (4.3)

Rather than make the lateral constraint dependent on sinusoidal functions of one of

the input variables, the maximum heading angle 𝜓𝑚𝑎𝑥 is used to establish the clear-

ance along with the small angle assumption sin(𝜓) ≈ 𝜓 and 𝑐𝑜𝑠(𝜓) ≈ 1 to simplify

the expression. Additionally, the minimum clearance between the two vehicles is set

such that 𝑐 ≥ 0.05 meters. The submarine dimensions from section 4.1 are substi-

tuted into equation (4.3) and non-dimensionalized in order to construct the following

constraint in terms of the input variables in table 4.2.

8.575𝑅𝐿𝑎𝑡−0.5

(︂
𝐷𝑆𝑢𝑏

𝐷𝑈𝑈𝑉

)︂−1

−9.425·10−3𝑢

(︂
𝐷𝑆𝑢𝑏

𝐷𝑈𝑈𝑉

)︂−1

(𝐿/𝐷𝑈𝑈𝑉 )−0.5048 ≥ 0 (4.4)

Likewise, another constraint is used in order to ensure that the UUVs are close enough

to the submarine to experience a hydrodynamic interaction. If the UUVs become too

laterally separated, there is no hydrodynamic interaction and the vehicles operates as

it would in an unobstructed flow field. Rather than reducing the domain, a constraint
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is established that maintains the distance between the centers of buoyancy of the two

vehicles 𝑦𝐷𝑖𝑠𝑡 to be less than or equal to 2𝐷𝑈𝑈𝑉 + 𝐷𝑆𝑢𝑏/2. This constraint is non-

dimensionalized in terms of the input variables as shown in equation (4.5).

−8.575𝑅𝐿𝑎𝑡 + 2

(︂
𝐷𝑆𝑢𝑏

𝐷𝑈𝑈𝑉

)︂−1

+ 0.5 ≥ 0 (4.5)

There are also simulations that are infeasible based on the relationship between the

length and diameter of the UUVs. In order to determine the viable relationship

between the 𝐿/𝐷𝑈𝑈𝑉 and the 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 , all of the UUV architectures in table

4.1 are plotted in figure 4-3. Two constraints are developed to reflect feasible UUV

designs. For example, if a large diameter UUV, like the Snakehead, had a large

𝐿/𝐷𝑈𝑈𝑉 , then it would be longer than the diameter of the submarine. Therefore, one

constraint is established for vehicles that are too long, while another is established

for vehicles that are too short for a given UUV diameter. Eliminating these kinds of

configurations allows a more thorough study of the feasible design space as shown in

the following figure.

Figure 4-3: The ROM model is constrained to ensure that only the feasible UUV
lengths and diameters are explored and modeled by constraining relationship between
𝐿/𝐷𝑈𝑈𝑉 and 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 .

The "too short" and "too long" UUV geometric constraints are once again established

in terms of the input variables in table 4.2. The following equations represent these
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constraints based on the input variables.

65.44

(︂
𝐷𝑆𝑢𝑏

𝐷𝑈𝑈𝑉

)︂−1

+ (𝐿/𝐷𝑈𝑈𝑉 )− 8 ≥ 0 (4.6)

−58.81

(︂
𝐷𝑆𝑢𝑏

𝐷𝑈𝑈𝑉

)︂−1

− (𝐿/𝐷𝑈𝑈𝑉 ) + 17 ≥ 0 (4.7)

4.4 Reduced Order Model Approach

In order to simulate how hydrodynamic interactions impact the maneuvering of a

UUV as it operates in close proximity to a moving submarine, these hydrodynamic

interactions need to be predicted in real time as the at the UUV changes position,

heading, and speed. Potential flow simulators may be fast enough to be solved in

real time, but their oversimplified physical assumptions lead to inaccuracies. CFD

simulations are often accurate in their ability to replicate real-world results, but they

are several orders of magnitude to slow to be able to be incorporated into UUV

autonomy and control systems. As such, a surrogate model is developed in order to

bridge this gap.

GP regression is selected as the surrogate method because it is non-parametric and

well suited to determine the form of any sufficiently smooth output function, like the

problem studied in this thesis. Additionally, GP regression does not require large

amounts of data for accurate predictions, which makes this method ideal due to the

expensive computational cost to acquire CFD simulation data [20]. A GP regression

model is trained on a data set of CFD simulations in order to reflect the accurate

physics of the CFD while being able to be solved in real time. Further details about

the GP regression fundamental equations, kernels, hyperparameter selection, and

uncertainty are found in section 2.2.1.

Due to the expensive nature of performing CFD simulation, careful consideration is

used to determine the next location in the domain where the CFD simulation ought
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to be performed. This is known as active learning. The non-myopic multi-fidelity

(NMMF) active learning algorithm is used with GP regression to model the hydro-

dynamic interactions between a UUV and submarine. This algorithm is discussed in

detail in section 2.3. This algorithm exploits the exploration benefit of performing

low fidelity simulations with the accuracy benefits of high fidelity simulations. For

this thesis, the low fidelity simulator is a potential flow solver known as FS-Flow [27].

Low fidelity potential flow solvers use simplified physics which neglects viscosity, skin

friction, boundary layer development, flow separation, and leads to the d’Alembert

paradox, which predicts zero drag on a UUV moving at constant velocity [14]. In or-

der to combat these physical limitations, potential flow solvers are often supplemented

with a simple parametric model to help predict the effects of viscosity on the moving

body. FS-Flow uses the panel method to resolve the flow around a moving body and

supplements the solution with one of four different viscous correlation lines. The fric-

tional resistance can be estimated using the International Towing Tank Conference

(ITTC) 57, Hughes, Grigson, or Katsui viscous correlation lines [27]. The ITTC-57

correction line is used to develop this ROM. Likewise, the high fidelity simulator is

a commercially available CFD software known as Siemens Star-CCM+. The CFD

simulation setup is the same as shown in chapter 3. This setup accurately predicted

the hydrodynamic interactions between the UUV and submarine as shown by the

validated results. In chapter 3, the submarine is the Explorer hull while the UUV

is the SUBOFF hull in order to be validated against tow tank experiments found in

literature [3]. For the development of this ROM, the submarine is a 34 foot (≈10.36

m) diameter SUBOFF hull while the UUV is the Explorer hull in order to more

accurately represent the vehicles used in real-world L&R operations.

The surrogate model needs to be able to determine the surge, sway, and yaw co-

efficients for the UUV, i.e. it requires a vector output. This requires additional

complexity than is found in typical single output GP regression. This multiple out-

put surrogate model is developed by simply making three separate single output GP

regression models, one for each output. However, multiple output active learning is

122



much more problematic because there are numerous ways in which each output could

be used to select the next optimal sampling location. As discussed in much more

detail found in section 2.5, the maximum variance criteria is used to develop this GP

regression model because it outperformed other sampling methods.

The NMMF active learning algorithm is iterated until 100 high fidelity CFD simula-

tions are performed. At this point, new high CFD simulations have little improvement

on the accuracy of the surrogate model. The GP regression model is trained on these

100 data points, and can now be used to predict surge, sway, and yaw coefficients for

any UUV position, heading, speed, or size within the input domain.

4.5 Results

As discussed in section 4.2,this ROM has six input parameters. There is no straight-

forward way to illustrate a six-dimensional parameter space, but to help visualize the

results, a series of two-dimensional plots are generated while keeping the other four

input dimensions constant. This allows the impact of each dimension to be assessed

while also displaying some interactions between input variables.

Figure 4-4 shows how the sway and yaw coefficients for the UUV vary as the UUV

is in different lateral and longitudinal positions from the submarine. A positive sway

coefficient pushes the UUV away from the submarine and a positive yaw moment

causes the bow of the UUV to be rotated away from the submarine.

(a) Colormap of sway coefficient 𝑌 ′ at various locations around the submarine at a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 10, and 𝐿/𝐷𝑈𝑈𝑉 = 8. Regions around the bow of
the submarine push the UUV away from the submarine while regions around the stern of
the submarine pull the UUV toward the submarine.
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(b) Colormap of yaw coefficient 𝑁 ′ at various locations around the submarine at a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 10, and 𝐿/𝐷𝑈𝑈𝑉 = 8. Regions around the bow of
the submarine rotate the bow of the UUV away from the submarine while regions around
the stern of the submarine rotate the UUV bow toward the submarine.

Figure 4-4: Colormaps of the hydrodynamic interaction sway and yaw coefficients 𝑌 ′

and 𝑁 ′ at different lateral and longitudinal positions with respect to the submarine.
The dots represent the locations selected using the NMMF algorithm to perform a
high fidelity CFD simulation [73].

Each high fidelity CFD simulation is represented as a dot in figure 4-4. The domain is

constrained such that the UUV will not be positioned directly in front of or behind the

submarine in order to avoid the risk of a collision. This figure illustrates how there are

large sway and yaw oscillations as a UUV changes its position longitudinally along

the submarine. Near the bow of the submarine, the UUV experiences a sway and

yaw force and moment that push the vehicle away and cause the UUV bow to rotate

away from the submarine. However, near the stern of the submarine, the UUV is

pulled toward and the UUV bow is rotated toward the submarine. The magnitude of

these forces and moments decreases as the UUV is positioned laterally farther from

the submarine. The oscillations in sway and yaw based on UUV location that are

captured by this surrogate model are observed in tow tank experiments between a

model submarine and UUV [3]. However, these tow tank experiments are greatly

limited in the size of the UUV that they can evaluate. In order to have similitude of

the diameter ratios between the real world vehicles, the model UUV would have to be

too small to capture any accurate EFD data of the hydrodynamic interactions.

These large sway and yaw coefficients with steep gradients near the bow and stern

of the submarine provide an obstacle for the launch and recovery of UUVs from

submarines. Accurately modeling these forces and moments and incorporating them
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into the UUV control and autonomy systems could enable UUVs to predict these large

hydrodynamic interactions and accurately navigate through these regions. Another

option would be to develop launch and recovery architectures that avoid these regions

altogether. This surrogate model could also be used to establish operating envelopes.

These are regions in which the UUV should not operate in order to avoid forces or

moments large enough to interfere with launch and recovery operations.

The surge force coefficient also experiences unique hydrodynamic interactions near

the bow and stern of the submarine. Figure 4-5 shows how the surge force coefficient

varies along the length of the submarine.

(a) Surge coefficient 𝑋 ′ at various 𝑅𝐿𝑎𝑡
and 𝑅𝐿𝑜𝑛𝑔 locations around the subma-
rine at a fixed 𝑢 = 3.5 knots, 𝜓 =
0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 =
8. Near the stern of the submarine, the
reduced order model predicts a positive
surge experienced by the UUV.

(b) Surge coefficient 𝑋 ′ at various
𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 and 𝑅𝐿𝑜𝑛𝑔 locations around
the submarine at a fixed 𝑅𝐿𝑎𝑡 = 0.08,
𝑢 = 3.5 knots, 𝜓 = 0∘, and 𝐿/𝐷𝑈𝑈𝑉 = 8.
The reduced order model predicts the posi-
tive surge experienced near the stern of the
submarine decreases for smaller diameter
UUVs.

Figure 4-5: UUV hydrodynamic interaction surge coefficient 𝑋 ′ at various longitudi-
nal separation ratios 𝑅𝐿𝑜𝑛𝑔 from the submarine

Figure 4-5 shows that the UUV experiences a substantial drop in the surge that

opposes forward UUV motion near the stern of the submarine at about 𝑅𝐿𝑜𝑛𝑔 ≈ −0.4.

In fact, this hydrodynamic interaction causes the surge force to become positive. This

means that this hydrodynamic interaction overcomes the drag of the vehicle, which

would cause it to accelerate forward, even with no thrust from the UUV propeller.
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There is a low pressure region and the end of the parallel mid-body of the submarine

as it transitions to the stern. There is also a high pressure region farther down the

stern of the submarine. The UUV experiences this positive surge when it encounters

the steep pressure gradient between these two regions. Also, as the fluid flows along

the stern of the submarine and passes the bow of the UUV, it accelerates between

the two vehicles due to the flow restriction. This restricted flow results in higher fluid

velocities between the vehicles, which causes an additional drop in pressure due to

the Bernoulli effect. The drop in pressure near the bow of the UUV also contributes

to the drop in surge and causes the UUV to get pulled forward. Additionally, the flow

around the stern of the submarine meets the UUV at an angle that causes a large lift.

This lift is perpendicular to the flow and causes the resultant total force vector to

have a component in the forward direction of the UUV. Figure 4-6 summarizes this

complex interaction.

Figure 4-6: Pressure field of the hydrodynamic interactions near the stern of the
submarine. The steep pressure gradient and flow field result in the UUV experiencing
a positive surge.

This specific hydrodynamic interaction could make UUV launch and recovery opera-

tions particularly challenging because it is so far outside of the normal UUV operating
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window. Figure 4-5b shows that the magnitude of this hydrodynamic interaction de-

creases as the diameter of the UUV decreases. This means that smaller UUVs would

be better equipped to overcome this specific hydrodynamic interaction.

A long slender body without control fins experiences a destabilizing effect when in

steady translation. This is known as the munk moment [14]. Also, the sway force

increases as the heading angle increases, just like lift increases when the angle of

attack increases on an airfoil. Figure 4-7 shows how the sway and yaw coefficients

vary based on the heading angle and speed of the UUV.

(a) Sway coefficient 𝑌 ′ of a UUV at
various heading angles 𝜓 and speeds 𝑢
with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 = 8.
The reduced order model predicts a near-
linear relationship been the sway and
heading angle.

(b) Yaw coefficient 𝑁 ′ of a UUV at
various heading angles 𝜓 and speeds 𝑢
with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 =
8. The reduced order model predicts a
near-linear relationship been the yaw and
heading angle.

Figure 4-7: Maps of the sway and yaw coefficients 𝑌 ′ and 𝑁 ′ at various heading angles
𝜓 and speeds 𝑢 for a UUV with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20,
and 𝐿/𝐷𝑈𝑈𝑉 = 8.

Figure 4-7 shows that if the vehicle is at a non-zero heading angle, there is a resulting

moment that will cause the vehicle to rotate in the direction in which it is angled.

The surrogate model is able to accurately predict the munk moment of the UUV

and the expected behavior of how it increases nearly linearly with heading angle [15].

The same relationship between heading angle and sway exists and the reduced order

model accurately captures this phenomenon as well. Additionally, because the sway
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and yaw coefficients are non-dimensionalized using the velocity of the vehicle, these

non-dimensional coefficients are expected to be relatively independent of the speed

[14, 15]. The surrogate model is also able to capture this effect.

The total drag on a submarine or UUV is a combination of its pressure (form) drag,

caused by wake formation and boundary layer separation, and its viscous (skin) drag,

caused by the fluid friction on the wetted surface of the vehicle. Vehicles have an

optimal length to diameter ratio that reduces the drag on the vehicle [6]. When

vehicles are very short, they are more like bluff bodies and have a lot of pressure

drag. As the vehicle becomes longer, the form drag decreases. However, when they

become too long, the increase in viscous drag due to the increase in wetted surface area

outweighs the loss in pressure drag. This means that a UUV has an optimal length

to diameter ratio 𝐿/𝐷𝑈𝑈𝑉 for reducing drag. The optimal 𝐿/𝐷𝑈𝑈𝑉 is dependent on

the shape and speed of the vehicle and is usually in the range of 8 to 12. Figure 4-8

shows how the surge coefficient varies with 𝐿/𝐷𝑈𝑈𝑉 .

(a) Surge coefficient𝑋 ′ of a UUV with var-
ious 𝐿/𝐷𝑈𝑈𝑉 and 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 for a fixed
𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, 𝑢 = 3.5 knots,
and 𝜓 = 0∘. UUVs with a small 𝐿/𝐷𝑈𝑈𝑉

experience more pressure drag so optimal
𝐿/𝐷𝑈𝑈𝑉 ≈ 10− 12.

(b) Surge coefficient 𝑋 ′ of a UUV at vari-
ous 𝐿/𝐷𝑈𝑈𝑉 and 𝜓 for a fixed 𝑅𝐿𝑜𝑛𝑔 =
0, 𝑅𝐿𝑎𝑡 = 0.08, 𝑢 = 3.5 knots, and
𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20. UUVs with a small
𝐿/𝐷𝑈𝑈𝑉 experience more pressure drag so
optimal 𝐿/𝐷𝑈𝑈𝑉 ≈ 10− 12.

Figure 4-8: Maps of the surge coefficient 𝑋 ′ at various 𝐿/𝐷𝑈𝑈𝑉 for a UUV with a
fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, and 𝑢 = 3.5 knots. This demonstrates the prediction
of optimal 𝐿/𝐷𝑈𝑈𝑉 .

This illustrates how the surrogate model is able to identify the trade-off between

128



pressure drag and viscous drag for different UUV lengths. The surrogate identified

the optimal length to diameter ratio of the UUV to be between about 10 and 12

for the given UUV shape and speed. Additionally, the surrogate also found that the

surge is relatively independent of small changes in heading angles. This is consistent

with real world results [51]. The gray region in figure 4-8a represents a constraint

within the domain that is unexplored due to UUV infeasibility as shown in equations

(4.6) and (4.7) and figure 4-3.

Another benefit of the NMMF active learning GP regression process is that the process

models the difference between the high fidelity CFD and low fidelity potential flow

simulations. This means that the results of the model can be used to identify scenarios

in which the low fidelity simulations fail to capture the accuracy of the high fidelity

simulations. Figure 4-9 compares the sway and yaw coefficients for the high fidelity

surrogate model with the low fidelity model surrogate.

(a) High fidelity surrogate model predic-
tion of the sway coefficient 𝑌 ′ of a UUV
at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘,𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20
and 𝐿/𝐷𝑈𝑈𝑉 = 8.

(b) High fidelity surrogate model predic-
tion of the yaw coefficient 𝑁 ′ of a UUV
at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘,𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20
and 𝐿/𝐷𝑈𝑈𝑉 = 8.
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(c) Low fidelity surrogate model predic-
tion of the sway coefficient 𝑌 ′ of a UUV
at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘,𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20
and 𝐿/𝐷𝑈𝑈𝑉 = 8.

(d) Low fidelity surrogate model predic-
tion of the yaw coefficient 𝑁 ′ of a UUV
at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed
𝑢 = 3.5 knots, 𝜓 = 0∘,𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20
and 𝐿/𝐷𝑈𝑈𝑉 = 8.

Figure 4-9: Comparison of sway and yaw coefficients of the high and low fidelity surrogate
models of a UUV at various 𝑅𝐿𝑎𝑡 and 𝑅𝐿𝑜𝑛𝑔 for a fixed 𝑢 = 3.5 knots, 𝜓 = 0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 =
20 and /𝐷𝑈𝑈𝑉 = 8. Low fidelity cannot accurately predict sway coefficient 𝑌 ′, but performs
well for yaw coefficient 𝑁 ′.

Figure 4-9 shows that the low fidelity potential flow model is quite accurate at predict-

ing the yaw coefficient, but has major limitations on predicting the sway coefficient

due to the d’Alembert paradox [14, 15]. Another example of this limitation is the

inability of the low fidelity potential flow solver to determine the change in sway at

various heading angles. Figure 4-10 compares heading angles from the potential flow

model with the high fidelity CFD model. This shows how potential flow is not able to

accurately capture how the sway coefficient varies with changes to the heading angle.

In fact, the low fidelity model predicts an almost constant near zero value which is

about the midpoint of the actual CFD results. This is the best that the low fidelity

model can do because of the d’Alembert paradox of potential flow.
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(a) High fidelity surrogate model pre-
diction of the sway coefficient 𝑌 ′ of a
UUV at various heading angles 𝜓 and
speeds 𝑢 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 =
0.08, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 =
8. This accurately reflects expected the
near-linear relationship between sway and
heading angle.

(b) Low fidelity surrogate model predic-
tion of the sway coefficient 𝑌 ′ of a UUV
at various heading angles 𝜓 and speeds
𝑢 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 = 8.
This predicts a constant near-zero value
as expected by the d’Alembert paradox.

Figure 4-10: Comparison of sway and yaw coefficients of the high and low fidelity
surrogate models of a UUV at various heading angles 𝜓 and speeds 𝑢 with a fixed
𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20, and 𝐿/𝐷𝑈𝑈𝑉 = 8. Low fidelity cannot to
accurately predict sway coefficient 𝑌 ′ due to the d’Alembert paradox.

Because the d’Alembert paradox is a known limitation of potential solvers, many

of them have built-in parametric models that augment the results. The d’Alembert

paradox results in potential flow predicting zero drag around the UUV in steady

state translation. In order to provide more accurate results, the FS-Flow potential

flow solver uses the ITTC-57 parametric equations to estimate the drag of the UUV

[27]. Figure 4-11 compares the surge coefficients of the high fidelity CFD surrogate

model and the low fidelity potential flow surrogate model at various UUV length to

diameter ratios.
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(a) High fidelity surrogate model predic-
tion of the surge coefficient 𝑋 ′ of a UUV
at various 𝐿/𝐷𝑈𝑈𝑉 and heading angles
𝜓 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝑢 = 3.5 knots, and 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20.

(b) Low fidelity surrogate model predic-
tion of the surge coefficient 𝑋 ′ of a UUV
at various 𝐿/𝐷𝑈𝑈𝑉 and heading angles
𝜓 with a fixed 𝑅𝐿𝑜𝑛𝑔 = 0, 𝑅𝐿𝑎𝑡 = 0.08,
𝑢 = 3.5 knots, and 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20.

Figure 4-11: Comparison of surge coefficient 𝑋 ′ of the high and low fidelity surrogate
models of a UUV at various 𝐿/𝐷𝑈𝑈𝑉 and heading angles 𝜓 with a fixed 𝑅𝐿𝑜𝑛𝑔 =
0, 𝑅𝐿𝑎𝑡 = 0.08, 𝑢 = 3.5 knots, and 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 20. The ITTC-57 parametric
equations of the low fidelity potential flow simulations are similar to the results of
the high fidelity CFD simulations.

Overall, the built-in ITTC-57 parametric equations of the low fidelity potential flow

model are very similar to the model trained on CFD data. This allows the potential

flow model to predict the surge coefficient much better than the sway coefficient.

4.6 Validation

In order to test the accuracy of the model, a total of 500 Latin hypercube samples

are used as test data for the GP regression model. The mean absolute error (MAE)

between the predicted and actual results of the test data is determined for each of the

three outputs. Because these values are hard to conceptualize, MAE can be thought

of in terms of the control system of the UUV and how these errors translate into

UUV control values. The MAE of the sway and yaw coefficients can be represented

as an equivalent rudder angle difference ∆𝛿𝑒𝑞,𝑌 or ∆𝛿𝑒𝑞,𝑁 . This is how much the

rudder angle would need to change to produce the force or moment equivalent to

the MAE. Likewise, the surge coefficient MAE can be thought of as a percentage of
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the propulsive force of the UUV (%𝑋𝑃𝑟𝑜𝑝). The hydrodynamic coefficients in use to

determine these error equivalents are taken from the Remus 100 [74].

Table 4.3: Mean absolute error and error equivalents of the various model outputs

Output Mean Absolute Error Error Equivalents

𝑋 ′ 7.492E-04 10.26% 𝑋𝑝𝑟𝑜𝑝

𝑌 ′ 7.220E-04 ∆𝛿𝑒𝑞,𝑌 = 1.78 degrees

𝑁 ′ 7.629E-04 ∆𝛿𝑒𝑞,𝑁 = 3.95 degrees

4.7 Conclusion

Overall, the reduced order model is able to predict the complex surge, sway, and

yaw hydrodynamic interactions that are determined using the CFD simulations and

validated against tow tank experiments. By refining the input domain, utilizing the

NMMF active learning algorithm, and implementing the maximum variance multiple

output criteria, this ROM is able to capture the known hydrodynamic interactions

much better than previous modeling attempts [67]. This reduced order model can

be used to determine the hydrodynamic interactions in within milliseconds. This is

several orders of magnitude faster than performing a CFD simulation, which usually

takes several hours to complete. This allows for the development of force and moment

colormaps, as seen in section 4.5, as well as enabling the hydrodynamic interactions

to be incorporated into UUV maneuvering simulators.
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Chapter 5

Simulating UUV Motion with

Hydrodynamic Interactions

5.1 Introduction

Several efforts have been made to model the hydrodynamic interaction forces and

moments acting on a UUV when it operates near a moving submarine [3, 19, 75].

These unwanted hydrodynamic interactions push and rotate the UUV and may cause

it to become uncontrollable or collide with the submarine [3]. Real-time modeling of

these hydrodynamic interactions is essential to simulate the motion required to launch

and recover UUVs from submarines because the UUV control surfaces and propeller

respond to real-time changes in the state of the UUV [15, 64]. There is no method

or tool that enables the real-time accurate modeling of these complex hydrodynamic

interaction forces and moments that a UUV experiences when operating in close

proximity to a moving submarine. In chapter 4, a surrogate reduced-order model

(ROM) of the hydrodynamic interactions between a UUV and submarine is developed

that is capable of predicting these forces and moments in real time. This thesis

explores incorporating this surrogate model into a UUV motion simulator in order

to explore how the hydrodynamic interactions impact the ability of the UUV to
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maneuver around the submarine.

Integrating this surrogate model into UUV motion simulators enables a better under-

standing of the current UUV autonomy and control capabilities. This is accomplished

by using the forces and moments of the surrogate model in the equations of motion

in order to determine how they impact the UUV. As the UUV position, speed, and

heading change, the surrogate is capable of predicting the hydrodynamic interactions

in real-time to see how the autonomy and control systems respond to these forces and

moments. This allows for the rapid exploration of which UUV maneuvers can be suc-

cessfully performed around a submarine. This can be used to develop safe operating

envelopes around the submarine for UUV L&R operations. Additionally, this allows

for the rapid testing of new autonomous behaviors designed to overcome unwanted

hydrodynamic interactions and improve launch and recovery maneuvering.

This chapter describes the method to incorporate the Gaussian Process (GP) regres-

sion model into the UUV motion simulator. This starts with an overview of the UUV

autonomy architecture and how each component is used to simulate UUV motion.

Next, a detailed account is provided of the equations of motion, control theory, and

autonomous behaviors which are used to develop the UUV maneuvering simulator.

This includes details about how the ROM is incorporated into the equations of mo-

tion and UUV autonomy architecture. Ocean waves are also incorporated into the

UUV maneuvering simulator in order to analyze the robustness of the UUV to over-

come perturbations. Lastly, the results of the UUV maneuvering simulations with the

ROM hydrodynamic interactions are presented, including the development of safe op-

erating envelopes for the UUV under various conditions as it maneuvers around the

submarine.

5.2 Approach

As explained in section 4.2, a body-fixed coordinate system located at the center of

buoyancy of the UUV is used to simulate the motion of the UUV. The surge, sway,
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heave, roll, pitch, and yaw velocities and forces/moments are defined as 𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟

and𝑋, 𝑌, 𝑍,𝐾,𝑀,𝑁 respectively. The position of the UUV is expressed in the inertial

reference frame using 𝑥, 𝑦, and 𝑧. Likewise, the roll, pitch, and yaw angles are denoted

as 𝜑, 𝜃, and 𝜓. The forces and moments can also be non-dimensionalized by the fluid

density 𝜌, UUV speed 𝑢, and UUV length 𝐿𝑈𝑈𝑉 , e.g. 𝑋 ′ = 𝑋/(0.5𝜌𝑢2𝐿2
𝑈𝑈𝑉 ) or

𝑁 ′ = 𝑁/(0.5𝜌𝑢2𝐿3
𝑈𝑈𝑉 ). The distances between the center of buoyancy and the center

of gravity of the UUV in the three principle directions are defined as 𝑥𝑔, 𝑦𝑔, and 𝑧𝑔.

This coordinate system is illustrated in figure 5-1.

Figure 5-1: Orientation of UUV body-fixed and inertial coordinate systems with their
corresponding velocities, forces, and moments [64]

.

Because experimentally attempting to study the hydrodynamic interactions between

a submarine and UUV is both costly and has the risk of collision between the vehicles,

a simulator is used to model the behavior and motion of a UUV. This simulator is

designed using the framework outlined in the open-source UUV autonomy simulator

known as MOOS-IvP [65]. This framework uses three different vectors to relay in-

formation between apps within the simulator. These three different vectors are the

state vector x, input vector u, and desired state vector xd and are listed in equation

(5.1). The propeller thrust and torque are denoted as 𝑋𝑃𝑟𝑜𝑝 and 𝐾𝑃𝑟𝑜𝑝 respectively

while the rudder and stern plane angles are denoted as 𝛿𝑟 and 𝛿𝑠 respectively.
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x = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓]𝑇

u = [𝑋𝑃𝑟𝑜𝑝, 𝐾𝑃𝑟𝑜𝑝, 𝛿𝑟, 𝛿𝑠]
𝑇

xd = [𝑢𝑑, ..., 𝜓𝑑]
𝑇

(5.1)

MOOS-IvP is an open-source C++ UUV simulator that uses three basic apps to

model the UUV control system and its impact on UUV motion. The pHelmIvP app

takes in the state vector of the vehicle position and motion and uses an autonomous

behavior to compute a new desired input vector containing the new desired speed and

heading. This desired input vector is passed to the pMarinePID app which simulates

a proportional integral derivative (PID) controller to determine the input vector of

the propeller thrust and torque, as well as the angle of the stern planes and rudder.

This input vector, as well as the state vector, is then passed to the uSimMarine app

which updates vehicle state, position and trajectory, based on propeller thrust and

control surface positions from the input vector in order to determine the new state

vector of the UUV. The process is iterated continually throughout the simulation.

Figure 5-2 shows an overview of the simulation architecture.

Figure 5-2: Overlay of standard UUV control system block diagram with the MOOS-
IvP architecture. This outlines the role of each app to fulfill its purpose of the control
system [65].
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While UUV simulators have been used extensively to model UUV missions, there are

no known simulators that are able to model the hydrodynamic interactions between

a UUV and a moving submarine with the accuracy of CFD [3]. This is because the

forces and moments felt by the UUV need to be determined in real-time in order

to determine how the UUV and submarine hydrodynamic interactions impact the

UUV motion. Real-time determination of these hydrodynamic interactions is beyond

current CFD capability. However, the ROM discussed in chapter 4 is capable of

performing real-time predictions of the hydrodynamic interaction forces and moments

on the UUV based on the state vector of the UUV. In this thesis, this new surrogate

model is used to simulate how these hydrodynamic interactions impact the motion of

a UUV as it maneuvers near a moving submarine.

5.3 Deviations from MOOS-IvP

While MOOS-IvP is an extremely robust and capable open-source UUV simulation

tool, there are certain areas of its architecture that present challenges for the inte-

gration of hydrodynamic interaction ROM. MOOS-IvP is exceptional at using multi-

objective optimization in order to reconcile behaviors that are in competition with

each other for the influence of the vehicle. For example, say a UUV is using a "Loiter"

behavior that directs the UUV to repeatedly transverse around a square course. The

UUV is also using the "Avoid Collision" behavior to ensure that it does not collide

with another vehicle. If another vehicle is to enter the course of the UUV, these two

behaviors provide different headings in which the UUV should travel. MOOS-IvP

reconciles these competing behaviors in order to determine the best course for the

vehicle. Additionally, the pHelmIvP app within MOOS-IvP has many preexisting

behaviors that can be leveraged to accomplish various missions. For example, the

"Shadow" behavior, which adjusts the UUV heading to match the trajectory of an-

other specified vehicle, can be used with the "Cut Range" behavior, which reduces

the UUVs range from a specified vehicle, in order to create a "Track and Trail" be-

havior. The resources used to develop MOOS-IvP have been primarily focused on
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these capabilities.

As for the uSimMarine app, which updates UUV state, position, speed, and heading

based on the UUV state and actuator inputs, the MOOS-IvP uses what is known

as a kinematic simulation method. This means that instead of using the forces and

moments exerted on the UUV to determine the new vehicle state, the uSimMarine

app uses a correlation between the actuator inputs and the corresponding state. For

example, the uSimMarine app uses a measured and validated series of correlations

between the thrust 𝑋𝑃𝑟𝑜𝑝 and rudder angle 𝛿𝑟 in order to determine the new vehicle

speed 𝑢 and heading 𝜓 respectively. Because this does not use the forces and mo-

ments acting on the vehicle to determine the new state of the vehicle, this does not

allow the hydrodynamic interaction forces and moments predicted by the ROM to

be easily integrated directly into the MOOS-IvP simulator. To overcome this chal-

lenge, a dynamic physics simulator using the equations of motion is developed for the

UUV simulator. This is the same dynamic simulation approach used in other UUV

simulators [64, 66, 15].

Overall, there are two possible system integration approaches to allow the hydrody-

namic interaction ROM to be incorporated into the UUV simulator. The first is to

create a new uSimMarine app that incorporates the equations of motion in order to

perform dynamic simulations, rather than kinematic simulations. The ROM is devel-

oped in python using robust open-source GPy libraries. Because the ROM is written

in python, it would have to be embedded into C++ using a python interpreter in or-

der to be used by the new uSimMarine app and the pHelmIvp app of the MOOS-IvP

architecture. The second method is to create a separate dynamic simulator in python.

Next, the code and architecture of MOOS-IvP are leveraged to convert the necessary

components into python in order to be compatible with the ROM. In either scenario,

the dynamic simulator using the UUV equations of motion needs to be developed.

For this thesis, the second approach was taken because it presented less integration

risk.
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5.4 Equations of Motion

The six degree-of-freedom rigid body equations of motion for a UUV are listed in

equation (5.2) in terms of the coordinate system in figure 5-1.

𝑚[�̇�− 𝑣𝑟 + 𝑤𝑞 − 𝑥𝑔(𝑞
2 + 𝑟2) + 𝑦𝑔(𝑝𝑞 − �̇�)

+𝑧𝑔(𝑝𝑟 + 𝑞) =
∑︁

𝑋𝑒𝑥𝑡

𝑚[�̇� − 𝑤𝑝+ 𝑢𝑟 − 𝑦𝑔(𝑟
2 + 𝑝2) + 𝑧𝑔(𝑞𝑟 − �̇�)

+𝑥𝑔(𝑞𝑝+ �̇�)] =
∑︁

𝑌𝑒𝑥𝑡

𝑚[�̇� − 𝑢𝑞 + 𝑣𝑝− 𝑧𝑔(𝑝
2 + 𝑞2) + 𝑥𝑔(𝑟𝑝− 𝑞)

+𝑦𝑔(𝑟𝑞 + �̇�)] =
∑︁

𝑍𝑒𝑥𝑡

𝐼𝑥𝑥�̇�+ (𝐼𝑧𝑧 − 𝐼𝑦𝑦)𝑞𝑟 − 𝐼𝑥𝑧(�̇� + 𝑝𝑞)

+𝐼𝑦𝑧(𝑟
2 − 𝑞2) + 𝐼𝑥𝑦(𝑝𝑟 − 𝑞)

+𝑚[𝑦𝑔(�̇� − 𝑢𝑞 + 𝑣𝑝)

−𝑧𝑔(�̇� − 𝑤𝑝+ 𝑢𝑟)] =
∑︁

𝐾𝑒𝑥𝑡

𝐼𝑦𝑦𝑞 + (𝐼𝑥𝑥 − 𝐼𝑧𝑧)𝑟𝑝− 𝐼𝑥𝑦(�̇�+ 𝑞𝑟)

+𝐼𝑥𝑧(𝑝
2 − 𝑟2) + 𝐼𝑦𝑧(𝑞𝑝− �̇�)

+𝑚[𝑧𝑔(�̇�− 𝑣𝑟 + 𝑤𝑞)

−𝑥𝑔(�̇� − 𝑢𝑞 + 𝑣𝑝)] =
∑︁

𝑀𝑒𝑥𝑡

𝐼𝑧𝑧 �̇� + (𝐼𝑦𝑦 − 𝐼𝑥𝑥)𝑝𝑞 − 𝐼𝑦𝑧(𝑞 + 𝑟𝑝)

+𝐼𝑥𝑦(𝑞
2 − 𝑝2) + 𝐼𝑥𝑧(𝑟𝑞 − �̇�)

+𝑚[𝑥𝑔(�̇� − 𝑤𝑝+ 𝑢𝑟)

−𝑦𝑔(�̇�− 𝑣𝑟 + 𝑤𝑞)] =
∑︁

𝑁𝑒𝑥𝑡

(5.2)

The 𝑒𝑥𝑡 subscript denotes the external forces and moments that the vehicle experi-

ences as to moves through the water.
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The total of each one of the principle forces or moments acting on the UUV equals

the sum of the hydrostatic forces 𝐹𝐻𝑆, hydrodynamic forces on the UUV body due

to hydrodynamic damping and added mass 𝐹𝐵, and the hydrodynamic forces due to

the control surfaces and propeller 𝐹𝐶 . This is shown in equation (5.3).

∑︁
𝐹𝑒𝑥𝑡 = 𝐹𝐻𝑆 + 𝐹𝐵 + 𝐹𝐶 (5.3)

Equation (5.4) provides each one of the hydrostatic forces and moments of the UUV

in the principle directions where 𝑊 is the vehicle weight and 𝐵 is the vehicle buoy-

ancy.

𝑋𝐻𝑆 = −(𝑊 −𝐵) sin 𝜃

𝑌𝐻𝑆 = (𝑊 −𝐵) cos 𝜃 sin𝜑

𝑍𝐻𝑆 = (𝑊 −𝐵) cos 𝜃 cos𝜑

𝐾𝐻𝑆 = −(𝑦𝑔𝑊 − 𝑦𝑏𝐵) cos 𝜃 cos𝜑

−(𝑧𝑔𝑊 − 𝑧𝑏𝐵) cos 𝜃 sin𝜑

𝑀𝐻𝑆 = −(𝑧𝑔𝑊 − 𝑧𝑏𝐵) sin 𝜃

−(𝑥𝑔𝑊 − 𝑥𝑏𝐵) cos 𝜃 cos𝜑

𝑁𝐻𝑆 = −(𝑥𝑔𝑊 − 𝑥𝑏𝐵) cos 𝜃 sin𝜑

−(𝑦𝑔𝑊 − 𝑦𝑏𝐵) sin 𝜃

(5.4)

The hydrodynamics forces and moments on the UUV body 𝐹𝐵 include a sum of the

damping forces 𝐹𝑑 and moments 𝑀𝑑 and the added mass forces 𝐹𝑎 and moments

𝑀𝑎 [15, 14]. The hydrodynamics of a UUV moving at a high speed in six degrees

of freedom is coupled and highly non-linear [76]. As such, a standard method of

capturing this non-linear behavior is by using hydrodynamic coefficients, which are

often referred to as hydrodynamic derivatives. The force or moment that a vehicle

142



experiences when moving at a constant velocity is known as hydrodynamic damp-

ing. The hydrodynamic damping coefficients are summarized in equation (5.5) where

𝑖1, 𝑖2 = 1, 2, 3, 4, 5, 6 represent the six degrees of freedom. 𝐹𝑑,1, 𝐹𝑑,2, 𝐹𝑑,3 and 𝑀𝑑,1,

𝑀𝑑,2, 𝑀𝑑,3 represent the surge 𝑋𝑑, sway 𝑌𝑑, heave 𝑍𝑑 damping forces, and the roll

𝐾𝑑, pitch 𝑀𝑑, and yaw 𝑁𝑑 damping moments respectively where 𝑗 = 1, 2, 3.

𝐹𝑑,𝑗 =
6∑︁

𝑖1=1

6∑︁
𝑖2=1

𝐹𝑗,𝑢𝑖1𝑢𝑖2𝑢𝑖1𝑢𝑖2

𝑀𝑑,𝑗 =
6∑︁

𝑖1=1

6∑︁
𝑖2=1

𝑀𝑗,𝑢𝑖1𝑢𝑖2
𝑢𝑖1𝑢𝑖2

𝑤ℎ𝑒𝑟𝑒

𝐹𝑗,𝑢𝑖1𝑢𝑖2 =𝑀𝑗,𝑢𝑖1𝑢𝑖2
= 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖1 > 𝑖2

(5.5)

Each force or moment accounts for the damping effect of 21 different independent

combinations of flow velocities through the use of hydrodynamic coefficients. For

example, 𝑁𝑢𝑣 represents the hydrodynamic coefficient that when multiplied by the

surge and sway velocities 𝑢 and 𝑣 returns the yaw moment that the vehicle experiences

due to moving at those two velocities. Also, when the 𝑖1 and 𝑖2 indices account for the

same velocity, the absolute value of one of the velocities is used in order to account

for the direction of the force. For example, 𝑋𝑢|𝑢|𝑢|𝑢| accounts for the surge force

experienced by the UUV as it moves in the forward direction. This approach allows

for the modeling of the coupled and non-linear behavior of the UUV hydrodynamics.

Terms higher than second order are neglected because they have been found to have

little impact on the equations of motion [76].

When a vehicle accelerates through a fluid of non-negligible mass, the presence of

the fluid around the body acts as an added mass to the body. When a force is

exerted on the body, the mass of the body will be accelerated as well as the mass

of the fluid that is displaced and flows around the accelerating body. As such, this
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additional inertial effect is often referred to as the added mass of a vehicle and is

denoted as 𝐹𝑎 and 𝑀𝑎 for the forces and moments respectively. Because the added

mass is dependent on the direction of acceleration, an added mass tensor 𝑚𝑖1𝑖2 may

be formed by determining the added mass associated with the force experienced in

the 𝑖1 direction due to accelerating the vehicle in the 𝑖2 direction. These added mass

terms 𝑚𝑖1𝑖2 can also be represented as coefficients just like the damping forces and

moments, where 𝑖1 is the force and 𝑖2 is the direction of acceleration, i.e. 𝑚11 = −𝑋�̇�

and 𝑚62 = −𝑁�̇� [15, 64, 14, 76]. The forces and moments due to the added mass are

found in equation (5.6) where once again 𝑖 = 1, 2, 3, 4, 5, 6 and 𝑗, 𝑘, 𝑙 = 1, 2, 3 [14, 15].

The equation uses the alternating tensor from Einstein summation notation which is

denoted as 𝜖𝑗𝑘𝑙.

𝐹𝑎,𝑗 = −�̇�𝑖𝑚𝑗𝑖 − 𝜖𝑗𝑘𝑙𝑢𝑖𝑢𝑘+3𝑚𝑙𝑖

𝑀𝑎,𝑗 = −�̇�𝑖𝑚𝑗+3,𝑖 − 𝜖𝑗𝑘𝑙𝑢𝑖𝑢𝑘+3𝑚𝑙+3,𝑖

−𝜖𝑗𝑘𝑙𝑢𝑘𝑢𝑖𝑚𝑙𝑖

(5.6)

The hydrodynamic forces and moments due to the control surfaces and propeller 𝐹𝐶

are also represented using hydrodynamic coefficients. Due to symmetry, the propeller

only has an effect on surge and roll and the control surfaces have no effect on the roll.

Also, the control surfaces are assumed to have negligible drag compared to the rest of

the vehicle, due to their slender profile and small surface area. The thrust and torque

of the propeller are denoted as 𝑋𝑃𝑟𝑜𝑝 and 𝐾𝑃𝑟𝑜𝑝 respectively. The rudder and stern

plane angles are denoted as 𝛿𝑟 and 𝛿𝑠 respectively and measured in radians. Equation

(5.7) shows each of the six principle forces and moments due to the control surfaces
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and propeller.

𝑋𝐶 = 𝑋𝑃𝑟𝑜𝑝

𝑌𝐶 = 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

𝑍𝐶 = 𝑍𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠

𝐾𝐶 = 𝐾𝑃𝑟𝑜𝑝

𝑀𝐶 =𝑀𝑢𝑢𝛿𝑠𝑢
2𝛿𝑠

𝑁𝐶 = 𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

(5.7)

The total forces and moments exerted on the vehicle is the sum of the hydrostatic,

damping, added mass, and control forces and moments outlined in equations (5.4, 5.5,

5.6, 5.7). There are a large number of terms for each force and moment, but many of

them are zero or negligible. Determining hydrodynamic coefficients can be performed

using potential flow, slender body strip theory, computational fluid dynamics, or

physical experiments on models [15, 64, 14]. The following simplifications are made

to the overall equations of motion in order to reduce the effort needed to determine

all of the hydrodynamic coefficients and reduce the computational cost of performing

CFD simulations for training data for the ROM [15, 64, 66].

• Three Degrees of Freedom - For simplicity, the full six degree of freedom equa-

tions are reduced to three by assuming that roll, pitch, and heave are zero.

Because many UUVs have similar geometry in the 𝑥𝑦 and 𝑥𝑧 plane, the heave

and pitch results are the same as the sway and yaw results [64]. Roll is also

assumed to have negligible impact on UUV motion due to vehicle symmetry [64,

66]. This simplification drastically reduces the effort to model submarine and

UUV hydrodynamic interactions while still capturing the fundamental behaviors

and capabilities. This is because the computational cost of a CFD simulation

is reduced by utilizing symmetry and the number of CFD simulations needed

to train the ROM is drastically reduced by reducing its input dimension.
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• Hydrostatics - UUVs are usually designed to be neutrally buoyant so the vehicle

weight and buoyancy offset. Additionally, the center of gravity is located in

approximately the same location in the 𝑥𝑦 plane as the center of buoyancy so

all hydrostatic terms cancel out [64, 66].

• Body Damping Forces - The sway and yaw hydrodynamic coefficients for the

coupled linear cross flow and angular velocity terms are found to be negligible

[64]. This includes 𝑌𝑣𝑟 and 𝑁𝑣𝑟. Also, assuming 𝑥𝑦 plane symmetry allows for

the neglecting of drag-induced forces and moments like 𝑌𝑢|𝑢| and 𝑁𝑢|𝑢|.

• Added Mass - By assuming 𝑥𝑦 and 𝑥𝑧 plane symmetry, the added mass tensor

simplifies to zero except on the diagonal terms and for the 𝑚26 = 𝑚62 and

𝑚35 = 𝑚53 terms.

Applying these assumptions to the state, input, and desired input vectors results in

the simplified vectors found in equation (5.8).

x = [𝑢, 𝑣, 𝑟, 𝑥, 𝑦, 𝜓]𝑇

u = [𝑋𝑃𝑟𝑜𝑝, 𝛿𝑟]
𝑇

xd = [𝑢𝑑, 𝜓𝑑]
𝑇

(5.8)

After applying these same simplifications to equations (5.3) through (5.6), the fol-

lowing equation represents the simplified forces and moments experienced on the

UUV.
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∑︁
𝑋𝑒𝑥𝑡 = 𝑋�̇��̇�+𝑋𝑢|𝑢|𝑢|𝑢|+𝑋𝑣𝑟𝑣𝑟

+𝑋𝑟𝑟𝑟𝑟 +𝑋𝑃𝑟𝑜𝑝∑︁
𝑌𝑒𝑥𝑡 = 𝑌�̇��̇� + 𝑌�̇��̇� + 𝑌𝑣|𝑣|𝑣|𝑣|+ 𝑌𝑟|𝑟|𝑟|𝑟|

+𝑌𝑢𝑣𝑢𝑣 + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟∑︁

𝑁𝑒𝑥𝑡 = 𝑁�̇��̇� +𝑁�̇��̇� +𝑁𝑣|𝑣|𝑣|𝑣|+𝑁𝑟|𝑟|𝑟|𝑟|

+𝑁𝑢𝑣𝑢𝑣 +𝑁𝑢𝑟𝑢𝑟 +𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

(5.9)

By combining equation (5.2) and (5.9) and moving the added mass terms to the left-

hand side of the equation, the simplified equations of motion are developed and listed

in equation (5.10).

⎡⎢⎢⎢⎣
𝑚−𝑋�̇� 0 0

0 𝑚− 𝑌�̇� −𝑌�̇�
0 −𝑁�̇� 𝐼𝑧𝑧 −𝑁�̇�

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋𝑢|𝑢|𝑢|𝑢|+ (𝑋𝑣𝑟 +𝑚) 𝑣𝑟

+𝑋𝑟𝑟𝑟𝑟 +𝑋𝑃𝑟𝑜𝑝

𝑌𝑣|𝑣|𝑣|𝑣|+ 𝑌𝑟|𝑟|𝑟|𝑟|+ 𝑌𝑢𝑣𝑢𝑣

+(𝑌𝑢𝑟 −𝑚)𝑢𝑟 + 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

𝑁𝑣|𝑣|𝑣|𝑣|+𝑁𝑟|𝑟|𝑟|𝑟|+𝑁𝑢𝑣𝑢𝑣

+𝑁𝑢𝑟𝑢𝑟 +𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

The accelerations are then computed by inverting the inertial matrix and multiplying
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it by the force vector as shown in equation (5.11).

⎡⎢⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑚−𝑋�̇� 0 0

0 𝑚− 𝑌�̇� −𝑌�̇�
0 −𝑁�̇� 𝐼𝑧𝑧 −𝑁�̇�

⎤⎥⎥⎥⎦
−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑋𝑢|𝑢|𝑢|𝑢|+ (𝑋𝑣𝑟 +𝑚) 𝑣𝑟

+𝑋𝑟𝑟𝑟𝑟 +𝑋𝑃𝑟𝑜𝑝

𝑌𝑣|𝑣|𝑣|𝑣|+ 𝑌𝑟|𝑟|𝑟|𝑟|+ 𝑌𝑢𝑣𝑢𝑣

+(𝑌𝑢𝑟 −𝑚)𝑢𝑟 + 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

𝑁𝑣|𝑣|𝑣|𝑣|+𝑁𝑟|𝑟|𝑟|𝑟|+𝑁𝑢𝑣𝑢𝑣

+𝑁𝑢𝑟𝑢𝑟 +𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.11)

These accelerations are then numerically integrated along a small time interval ∆𝑡

to determine the UUV linear and angular velocities, and then integrated again to

find the UUV position and heading. Equation (5.12) is Euler’s method for numerical

integration and is the method used for this research.

𝑢𝑡+1 = 𝑢𝑡 + �̇�𝑡∆𝑡

𝑣𝑡+1 = 𝑣𝑡 + �̇�𝑡∆𝑡

𝑟𝑡+1 = 𝑟𝑡 + �̇�𝑡∆𝑡

𝑥𝑡+1 = 𝑥𝑡 + [𝑢𝑡 cos𝜓 − 𝑣𝑡 sin𝜓]∆𝑡

𝑦𝑡+1 = 𝑦𝑡 + [𝑢𝑡 sin𝜓 + 𝑣𝑡 cos𝜓]∆𝑡

𝜓𝑡+1 = 𝜓𝑡 + 𝑟𝑡∆𝑡

(5.12)

These equations are ultimately used to determine the new state of the UUV based on

the forces and moments acting on the vehicle. This is performed by the uSimMarine

app which takes as an input the previous state vector x and the input vector u with

the propeller thrust 𝑋𝑃𝑟𝑜𝑝 and rudder angle 𝛿𝑟 and returns the new position, speed,
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and heading of the UUV as a new state vector. The sin𝜓 and cos𝜓 terms appear in

equation (5.12) to convert from the body-fixed coordinate system of the UUV to the

inertial coordinate system, which for this study, is fixed to the center of buoyancy of

the submarine.

When a UUV operates in close proximity to a moving submarine, the submarine

creates a wake and flow field that affects the motion of the UUV. These equations of

motion in equation (5.10) that use standard hydrodynamic coefficients do not account

for these hydrodynamic interactions between a UUV and a submarine. In order to

simulate the UUV motion near a submarine, the equations of motion need to be

modified by replacing the UUV body forces and moments with the GP regression

surrogate model forces and moments.

5.5 Gaussian Process Regression

To simulate UUV motion near a moving submarine, the hydrodynamic interaction

forces and moments acting on the UUV need to be determined each time it changes

position, heading, or speed. This means that these hydrodynamic interactions need

to be predicted in real time as the UUV maneuvers around the submarine. Because

CFD usually takes hours or days to complete a simulation for one specific UUV in one

particular position, heading, or speed, a ROM is used to predict these hydrodynamic

interactions in real time. GP regression is used to create a surrogate ROM that

predicts the surge, sway, and yaw hydrodynamic interaction forces and moments

based on the state of the UUV. GP regression also provides estimates for the epistemic

uncertainty or errors due to a lack of data. The GP regression model can be expressed

as a random function,

𝑦 = 𝑓(𝑥) + 𝜖 (5.13)

where 𝑥 ∈ R𝑑, 𝜖 ∼ 𝒩 (0, 𝜎2) represents the noise of the model. The function 𝑓 follows
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a Gaussian distribution with prescribed mean and covariance function [20]:

𝑓(𝑥) ∼ 𝒢𝒫(𝜇(𝑥), 𝑘(𝑥, 𝑥′)), (5.14)

where 𝜇(𝑥) is the mean and 𝑘(𝑥, 𝑥′) the covariance:

𝜇(𝑥) = E[𝑓(𝑥)] (5.15)

𝑘(𝑥, 𝑥′) = E[(𝑓(𝑥)− 𝜇(𝑥))(𝑓(𝑥′)− 𝜇(𝑥′))] (5.16)

GP regression can use one of many different covariance functions, which are also

known as kernels. This study uses the popular radial basis function (RBF) kernel

with automatic relevance determination:

𝑘(𝑥, 𝑥′) = exp

(︂
−(𝑥− 𝑥′)𝑇𝜆−1(𝑥− 𝑥′)

2

)︂
(5.17)

where 𝜆 is the diagonal matrix containing the length scales of each input dimension.

This kernel is selected because it mimics a Bayesian linear regression model with an

infinite number of basis functions [20], which can take the form of any sufficiently

smooth output function. Because the output function of the hydrodynamic interac-

tion is unknown and complex, this kernel is opportune to map the output. Automatic

relevance determination allows each input dimension to have a different length scale.

This is necessary to implement in this GP regression model given the nature of the

inputs of the UUV location, speed, size, and heading.

The objective of GP regression is to determine the predicted mean 𝑦(X*) and covari-

ance 𝐾𝑦𝑦(X*,X
′
*) for a given set of input-output data. The data set 𝒟 ={𝑥𝑖, 𝑦𝑖}𝑛𝑖=1

is used to train the GP regression model where 𝑛 is the number of samples in the

data set. The input and output pairs are notated as X = [𝑥1, ..., 𝑥𝑛] ∈ R𝑑×𝑛 and

y = [𝑦1, ..., 𝑦𝑛] ∈ R𝑛 where 𝑑 is the dimension of the input domain. Likewise,
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X* = [𝑥*1, ..., 𝑥*𝑚] ∈ R𝑑×𝑚 is a set of 𝑚 locations for which a prediction is de-

sired. The predicted mean and covariance at a set of points X* are listed below as

equations (5.18) and (5.19) [20]:

𝑦(X*) = 𝐾(X*,X)[𝐾(X,X) + 𝜎2
𝑛I]

−1y (5.18)

𝐾𝑦𝑦(X*,X
′
*) = 𝐾(X*,X

′
*)

−𝐾(X*,X)[𝐾(X,X) + 𝜎2
𝑛I]

−1𝐾(X,X′
*)

(5.19)

The term 𝜎2
𝑛 represents the aleatoric uncertainty in the training samples. This is a

hyperparameter optimized by gradient descent methods to improve the performance

of the GP regression [20]. Additionally, it helps ensure the matrix in brackets in

equations (5.18) and (5.19) is well conditioned.

As the UUV changes position, heading, and speed, it experiences different forces and

moments due to the hydrodynamic interactions between the vehicles. For this study,

terms from the simplified state vector in equation (5.8) are used as inputs to the

GP regression model. This allows the surrogate model to predict the hydrodynamic

interactions based on changes to the UUV state vector. Much more detail about

the setup and development of the GP regression model is provided in chapter 4. Put

simply, the GP regression surrogate model takes the state vector, as well as the length

and diameter of the UUV, and predicts the UUV surge, sway, and yaw body forces and

moments due to the hydrodynamics interactions, which are denoted as 𝑋𝑠, 𝑌𝑠, and

𝑁𝑠 respectively. This is performed by non-dimensionalizing the state vector and UUV

length to match the input variables in table 4.2. These are then placed into X* from

equation (5.18), representing the location for which a prediction of the hydrodynamic

interactions is desired. The 100 CFD simulation locations are organized into the data

set X with three distinct labels y, one for each of the surge, sway, and yaw forces

and moments. Equation (5.18) is then used to solve for the predicted surge, sway,

and yaw body forces and moments due to the hydrodynamics interactions 𝑋𝑠, 𝑌𝑠,

and 𝑁𝑠. These GP regression outputs are incorporated into the equations of motion
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by replacing the body forces with those predicted by the surrogate. Equation (5.20)

shows the modified version of the simplified equations of motion that account for the

hydrodynamic interactions.

⎡⎢⎢⎢⎣
𝑚−𝑋�̇� 0 0

0 𝑚− 𝑌�̇� −𝑌�̇�
0 −𝑁�̇� 𝐼𝑧𝑧 −𝑁�̇�

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
�̇�

�̇�

�̇�

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑋𝑠 +𝑋𝑃𝑟𝑜𝑝

𝑌𝑠 + 𝑌𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

𝑁𝑠 +𝑁𝑢𝑢𝛿𝑟𝑢
2𝛿𝑟

⎤⎥⎥⎥⎦
(5.20)

These equations of motion are solved in the uSimMarine app of the MOOS-IvP archi-

tecture. Because these equations of motion are embedded in the uSimMarine app, the

GP surrogate model also needs to be embedded into this app. This enables the simula-

tor to determine how the hydrodynamic interactions impact the UUV motion and the

ability of the UUV autonomy and control systems to overcome these hydrodynamic

interactions. Figure 5-3 shows how the GP surrogate model of the hydrodynamic

interactions is integrated into the MOOS-IvP simulation architecture.
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Figure 5-3: Integration of the hydrodynamic interactions GP surrogate into the
MOOS-IvP architecture. The GP surrogate is embedded in the uSimMarine app
to determine how the hydrodynamic interactions impact the UUV motion.

Now that the hydrodynamic interactions GP regression model has been incorporated

into the equations of motion of the uSimMarine app, the UUV control system and

autonomous behaviors can be analyzed to evaluate their robustness against these

unwanted hydrodynamic interactions.

5.6 Control Theory

The pMarinePID app simulates the UUV PID controller. This app takes in the

desired speed and heading from the pHelmIvP app and returns the input vector,

which contains the propeller thrust 𝑋𝑃𝑟𝑜𝑝 and rudder angle 𝛿𝑟 necessary to achieve

the desired speed and heading. The thrust and rudder angle also depend on the

current state of the vehicle. The difference between the desired and current state

is known as the error, denoted as 𝑒𝑢(𝑡) and 𝑒𝜓(𝑡). The standard PID controller

calculates the sum of some proportion of the error, its derivative, and integral as

shown in equation (5.21) [15]. The resulting 𝜏𝑋𝑃𝑟𝑜𝑝
and 𝜏𝛿𝑟 represent the necessary

change in thrust or rudder angle from the current state. These changes are added

to the current thrust and rudder angle to determine new thrust 𝑋𝑃𝑟𝑜𝑝,𝑡+1 and rudder
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angle 𝛿𝑟,𝑡+1 as outlined in equation (5.21).

𝑒𝑢(𝑡) = 𝑢𝑑 − 𝑢

𝑒𝜓(𝑡) = 𝜓𝑑 − 𝜓

𝜏𝑋𝑃𝑟𝑜𝑝
= 𝐾𝑝,𝑋𝑃𝑟𝑜𝑝

𝑒𝑢(𝑡) +𝐾𝑑,𝑋𝑃𝑟𝑜𝑝
𝑒𝑢(𝑡)

+𝐾𝑖,𝑋𝑃𝑟𝑜𝑝

∫︁ 𝑡

0

𝑒𝑢(𝜏)𝑑𝜏

𝜏𝛿𝑟 = 𝐾𝑝,𝛿𝑟𝑒𝜓(𝑡) +𝐾𝑑,𝛿𝑟𝑒𝜓(𝑡)

+𝐾𝑖,𝛿𝑟

∫︁ 𝑡

0

𝑒𝜓(𝜏)𝑑𝜏

𝑋𝑃𝑟𝑜𝑝,𝑡+1 = 𝑋𝑃𝑟𝑜𝑝,𝑡 + 𝜏𝑋𝑃𝑟𝑜𝑝,𝑡

𝛿𝑟,𝑡+1 = 𝛿𝑟,𝑡 + 𝜏𝛿𝑟,𝑡

(5.21)

Each of the 𝐾𝑝, 𝐾𝑑, and 𝐾𝑖 constants are often referred to as gains and represent

how much the proportional, derivative, and integral terms impact the change to the

thrust or rudder angle. The thrust and rudder angles each have their own set of

gains. These gains are determined for each vehicle using the Ziegler Nichols method

[77]. Ultimately, the pMarinePID app has the input of the desired speed and heading

from the desired state vector xd along with the UUV state vector x. The app returns

the input vector 𝑢 containing the new propeller thrust 𝑋𝑃𝑟𝑜𝑝,𝑡+1 and rudder angle

𝛿𝑟,𝑡+1.

5.7 Autonomous Behaviors

The autonomous behavior of the UUV is modeled after the MOOS pHelm-IvP way-

point behavior [65]. This waypoint behavior takes the current state of the UUV and

determines the desired speed and desired heading. The desired speed specified for a

simulation is held constant. However, the desired heading is determined by estab-

lishing a series of waypoints, or locations, that the UUV will pass through. Once
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the UUV passes through a waypoint, it maneuvers toward the next waypoint. An

imaginary track-line is established between the previous waypoint and the next way-

point. A perpendicular line between the UUV and the track-line is established. Once

this perpendicular intersection point on the track-line is known, a lead point is de-

termined by finding the point at a predetermined distance from the perpendicular

intersection point on the track-line in the direction of the next waypoint. This dis-

tance is known as the lead distance 𝑑𝑙𝑒𝑎𝑑. The desired heading is then computed by

determining the heading of the lead point with respect to the UUV so that the UUV

always desires to head toward the lead point. If the lead point extends beyond the

next waypoint, the next waypoint becomes the lead point. Figure 5-4 illustrates the

waypoints behavior.

Figure 5-4: Waypoints Behavior: The purpose of this behavior is to traverse a set
of waypoints along a track-line. The vehicle steers toward the lead point on the
track-line rather than toward the next waypoint. [65]

The waypoints behavior is simulated in the pHelmIvP app. In summary, the pHelmIvP

app, which uses the waypoints behavior, takes the state vector of the UUV at a given

point xt as an input and returns the desired state vector xd,t containing the desired

speed and desired heading. This desired state vector is fed into the pMarinePID

app which uses control theory to determine the input vector ut, which contains the

appropriate propeller thrust and rudder angle. This input vector is then fed to the

uSimMarine app which uses the equations of motion to determine a new UUV state

vector xt+1. This loop is iterated along a small time step ∆𝑡 to simulate the UUV

motion. This process is summarized in figure 5-2.
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By incorporating the GP surrogate model into the equations of motion as shown in

equation (5.20), a simulation can be performed that accounts for the submarine and

UUV hydrodynamic interactions. Figure 5-5 provides an example simulation of a

large UUV performing a simple overtaking maneuver near the stern of the submarine

with an overtaking velocity of 𝑈𝑜𝑡 = 0.25 m/s and a submarine velocity of 𝑈𝑠𝑢𝑏 = 1.5

m/s (≈3 knots).

Figure 5-5: The large UUV is unable to overcome the hydrodynamic interactions near
the stern of the submarine. This results in a collision.

As the UUV approaches the stern of the submarine, the sway and yaw hydrodynamic

interactions cause the UUV to be pulled and rotated toward the submarine which

ultimately results in a collision. As the UUV starts to be pulled off course, it responds

by positioning the rudder to maneuver the UUV away from the submarine. However,

the standard behavior is not responsive enough to overcome these hydrodynamic

interactions so the UUV ultimately collides with the submarine.
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5.8 Robustness

The main reason for implementing a UUV control system is to allow it to make course

corrections from perturbations that take the UUV off course. In addition to the hy-

drodynamic interactions, there are other sources of perturbation that exist when a

UUV is maneuvering. Determining the robustness of the UUV against these pertur-

bations is vital to assess the feasibility of launch and recovery operations. Large-scale

perturbations due to ocean eddies and currents occur at large enough time scales and

length scales that they do not have a large impact on UUV launch and recovery op-

erations [78]. If a submarine and UUV are operating in an ocean cross current, over

time they will drift with the current. Any changes to the current are slow enough and

over large length scales that they will not have a large impact on UUV maneuver-

ability. Likewise, small-scale turbulence caused by the vehicles moving through the

water will have small enough time and length scales that they will not impact UUV

motion [79]. However, the perturbations caused by surface waves are in the time and

length scales that may have large impacts on UUV maneuverability.

Ocean waves are often described as being stochastic, meaning that they are random or

unpredictable. These waves can be considered stochastic in terms of their amplitude

or wave height. The height of ocean waves can vary widely, depending on wind speed,

the distance over which the wind blows on the wave, and the sea state of the ocean

surface. Ocean waves can also be considered stochastic in terms of their period, or

time between waves. Due to this stochastic nature, waves are often described using

probability distribution functions or wave spectra. As such, ocean waves are often

categorized into different sea states as shown in table 5.1 [80].
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Table 5.1: Sea states for the general North Atlantic [80].

Sea Significant Wave Period Most Probable

State Height (m) Range (s) Period (s)

0-1 0-0.1 - -

2 0.1-0.5 3.3-12.8 7.5

3 0.5-1.25 5.0-14.8 7.5

4 1.25-2.5 6.1-15.2 8.8

5 2.5-4.0 8.3-15.5 9.7

6 4.0-6.0 9.8-16.2 12.4

The solution space of the impact of waves on different combinations of UUV size,

location, speed, heading, and depth is very large. In order to fully explore this so-

lution space and develop operating envelopes, a large number of UUV simulations

needs to be performed. If the waves are modeled as a probability distribution func-

tion or spectra, then the impact of the waves on the motion of the UUV is also

probabilistic. Implementing the waves in this matter is complex and computationally

expensive. Ultimately, the results need to be simplified to a non-probabilistic repre-

sentation when developing operating envelopes. As such, the waves are implemented

in a deterministic manner and modeled as a plane progressive wave using linear wave

potential theory. Modeling the waves in this way is common and is also often consid-

ered as having the greatest practical significance [14]. This is cheaper and easier to

implement and allows for the creation of simpler operating envelopes.

The 2D fluid velocity components due to the waves are defined as 𝑢𝑤 and 𝑣𝑤 [14].

These fluid velocities are in the inertial coordinate system where 𝑢𝑤 is in the direction

in which the wave is progressing and 𝑣𝑤 is in the direction pointed down toward deeper

depths. The significant wave height is defined as the average of the highest 1/3 of

the wave heights over a time history. The amplitude 𝐴 of a wave is 1/2 of the wave

height. As such, 𝐴 is set for each sea state as 1/2 of the largest value in the range of

significant wave heights listed in table 5.1 in order to be conservative. The angular
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frequency 𝜔 = 2𝜋/𝑇 is also found for each sea state using the most probable period.

The wave number 𝑘 = 2𝜋/𝜆 is found using the wavelength 𝜆.

The wavelength 𝜆 depends on the angular frequency 𝜔 of the wave, as well as the

dispersion relationship, which depends on the depth to the ocean floor. In this case,

the deep water assumption is made meaning that the ocean floor is deeper than 𝜆/2.

This is a safe assumption given the range of possible wavelengths and the requirements

for the minimum charted depth of water [68]. This means the dispersion relationship is

𝑘 = 𝜔2/𝑔 and the wavelength is found using 𝜆 = 𝑔𝜔2/(2𝜋) where 𝑔 is the acceleration

due to gravity. Lastly, 𝑥 and 𝑦 represent the location in the flow field where 𝑦 is the

depth.

𝑢𝑤 = 𝜔𝐴𝑒𝑘𝑦 cos (𝑘𝑥− 𝜔𝑡) (5.22)

𝑣𝑤 = 𝜔𝐴𝑒𝑘𝑦 sin (𝑘𝑥− 𝜔𝑡) (5.23)

This flow field is ultimately incorporated into the UUV simulator by converting the

flow field into the UUV body-fixed coordinate system and then combining the UUV

velocities with these velocities due to the waves from equation (5.22) and (5.23). The

following figure is an example illustration of a small UUV traversing a 10 meter track-

line operating 50 meters deep in sea state 5 conditions. The UUV is operating at 1.75

m/s (≈3.5 knots) with the inertial frame moving 3 knots, meaning the 𝑈𝑜𝑡 = 0.25

m/s
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Figure 5-6: A small UUV in sea state 5 at 50 meters deep is pushed by the waves and
oscillates around the track-line.

In this high sea state, the UUV is pushed off course by the wave flow field even at

50 meters deep. The autonomous behavior and control system allows for the UUV to

course correct, but the waves repeatedly push the UUV off course.

The UUV simulator only uses three degrees of freedom. In order to be conservative,

the perturbations caused by the waves are assumed to be in the same plane as the UUV

velocities. This causes the UUV to be pushed toward or away from the submarine.

This is a conservative approach because it models the worst-case scenario of the

direction of fluid velocities due to the wave. This would be analogous to having a

UUV operate above a submarine. The waves would push it up or down toward the

submarine. If the UUV were to the side of the submarine, these perturbations would

cause the UUV to move in a direction orthogonal to the plane between the vehicle
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axes. Additionally, the submarine is assumed to have no impact on damping the fluid

velocity due to the waves. This assumption is made for ease of implementation, but

it is a conservative approach representing a worst-case scenario.

5.9 UUV Simulation Setup

This study examined three different UUV sizes: small, medium, and large. The

small UUV uses the inertial properties and hydrodynamic coefficients of the Remus

100 [64]. The medium and large UUVs use the corresponding inertial properties

and hydrodynamic coefficients of the Naval Postgraduate School (NPS) Autonomous

Underwater Vehicle (AUV) II and the Swimmer Delivery Vehicle (SDV) respectively

[66, 81, 15]. The submarine in this simulation is the Defense Advanced Research

Projects Agency (DARPA) SUBOFF hull that has been scaled up to have a diameter

of 34 feet (10.363 meters) [49]. The submarine is simulated at speeds between two

and five knots. This is based on the minimum speed a submarine needs to move

to have enough flow over the control surfaces to stay controllable and the maximum

speed of several UUVs [19].

5.10 UUV Simulation Validation

The UUV simulator is validated against UUV experimental runs to ensure that it is

accurately reflecting the real-world physics [64, 66]. One of these real-world experi-

ments is of a Remus 100 UUV performing a step change in rudder angle of four degrees.

This scenario is simulated using the process outlined in this research and compared

with real-world results. The following figure shows the simulated UUV motion versus

the actual Remus 100 motion during a four-degree rudder angle maneuver.
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(a) UUV simulation of a Remus 100 with
a four-degree step change in rudder angle.

(b) Actual experiment of a Remus 100
with a four-degree step change in rudder
angle [64].

Figure 5-7: Validation of the UUV simulator against real-world experiment of a Remus
100 with a four-degree step change in rudder angle. The simulated and actual yaw
rates 𝑟 are nearly identical.

As seen in figure 5-7, the experiment of the Remus 100 UUV performing a step change

in rudder angle of four degrees found that the yaw rate is about -10 degrees per second

[64]. The UUV simulator predicts a yaw rate of -10.04 degrees per second.

Similarly, an experiment on the Naval Postgraduate School (NPS) Autonomous Un-

derwater Vehicle (AUV) II was performed using rudder commands that alternated

by ±15 degrees every 45 seconds [66]. These rudder commands resulted in a yaw

rate of about ±7.5 degrees per second. The UUV simulator predicted a yaw rate of

about ±7.24 degrees per second. This demonstrates that the UUV simulator is able

to replicate the results experienced by real-world UUVs.

In order to validate the autonomy and control functions of the UUV simulator, a

simulation is performed and compared against a standard "alpha" mission in the

MOOS-IvP simulator [65]. This mission is a series of waypoints in a pentagon shape.

The following figure shows the performance of the UUV simulator against the vali-

dated MOOS-IvP simulator.
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(a) UUV simulation of the alpha mission.
(b) MOOS-IvP simulation of the alpha
mission [65].

Figure 5-8: Validation of the UUV simulator against the MOOS-IvP simulator for a
series of waypoints known as the alpha mission.

The UUV simulator is able to perform the alpha mission just like the MOOS-IvP

simulator. Both simulators have the UUV navigate through the series of waypoints

with the UUV slightly overshooting the track-line as it goes around the corners, but

then quickly realigns with the track-line. This validates the autonomy and control

functions of the UUV simulator.

5.11 Results

5.11.1 Force and Moment Maps

The GP regression surrogate model shows that the regions with the largest hydrody-

namic interactions are near the bow and stern of the submarine [73]. When a UUV

operates in these regions, there is a high risk of collision. Figure 5-9 shows the non-

dimensional hydrodynamic interaction surrogate sway and yaw coefficients 𝑌 ′
𝑠 and

𝑁 ′
𝑠 experienced by the UUV in various locations around the submarine. A negative

sway and yaw cause the UUV to be sucked toward and the UUV bow to be rotated

toward the submarine respectively. This figure is for a large UUV that is one meter

in diameter and eight meters long traveling at 1.75 m/s (≈3.5 knots) parallel to the
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submarine. The surrogate model is capable of altering these additional parameters

and generating new maps, but the added dimensionality is not shown in order to be

concise and simply illustrate regions with large hydrodynamic interactions.

(a) Colormap of sway coefficient 𝑌 ′
𝑠 at various locations around the submarine at a fixed

𝑈 = 3.5 knots, 𝜑 = 0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 10, and 𝐿/𝐷𝑈𝑈𝑉 = 8. Regions around the bow of
the submarine push the UUV away from the submarine while regions around the stern of
the submarine pull the UUV toward the submarine.

(b) Colormap of yaw coefficient 𝑁 ′
𝑠 at various locations around the submarine at a fixed

𝑈 = 3.5 knots, 𝜑 = 0∘, 𝐷𝑆𝑢𝑏/𝐷𝑈𝑈𝑉 = 10, and 𝐿/𝐷𝑈𝑈𝑉 = 8. Regions around the bow of
the submarine rotate the bow of the UUV away from the submarine while regions around
the stern of the submarine rotate the UUV bow toward the submarine.

Figure 5-9: Colormaps of the hydrodynamic interaction sway and yaw coefficients 𝑌 ′
𝑠

and 𝑁 ′
𝑠 at different lateral and longitudinal positions with respect to the submarine.

The dots represent the locations of a CFD simulation [73].

5.11.2 Results for Standard UUV

Due to the low cost of running the GP surrogate model, many simulations may be

performed in various positions around the submarine and under various conditions.

This allows for the creation of a safe operating envelope, a region under specified

conditions in which the UUV is capable of overcoming the hydrodynamic interactions.

Likewise, a region can be identified in which a collision is predicted. A close call is

defined as a case in which the UUV comes within one UUV diameter of the submarine

without a collision, or when the UUV is directly in front of or behind the submarine.
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A large stray is defined as the case when the hydrodynamic interactions cause the

UUV to stray away from its track-line by more than one meter. Figure 5-10 illustrates

the operating envelope for the small, medium, and large UUV that are traveling at

the same speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉

and no waves.

(a) Small UUV operating envelope

(b) Medium UUV operating envelope

(c) Large UUV operating envelope

Figure 5-10: Operating envelope for the small, medium, and large UUVs that are
traveling at the same speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with
𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 and no waves.

Figure 5-10 shows that all three of the UUVs have issues overcoming the hydrodynamic

interactions illustrated in figure 5-9. All three different size UUVs have large operating

regions near the stern of the submarine that result in collisions. Additionally, the large

hydrodynamic interactions near the bow of the submarine cause all three size UUVs to

stray large distances from the track-line, even though they do not result in a collision

with the submarine. This means that UUVs operating with the standard waypoint

behavior will struggle to perform overtaking maneuvers without experiencing large
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strays or collisions. As such, launch and recovery architectures and schemes may be

more successful if implementing a lateral approach to the parallel mid-body section

of the submarine.

There are several parameters, such as 𝑈𝑜𝑡, 𝑈𝑠𝑢𝑏, and 𝑑𝑙𝑒𝑎𝑑, which have an influence on

how the hydrodynamic interactions impact the UUV. As such, many more operating

envelopes could be created for a range of different scenarios. However, after sampling

several different scenarios, varying the 𝑈𝑜𝑡 and 𝑈𝑠𝑢𝑏 had a very small impact on the

operating envelope compared to 𝑑𝑙𝑒𝑎𝑑. This is likely because 𝑈𝑜𝑡 and 𝑈𝑠𝑢𝑏 have narrow

ranges for launch and recovery operations and the vehicle maneuverability is relatively

constant over this range. However, 𝑑𝑙𝑒𝑎𝑑 influences the vehicle behavior, rather than

making small adjustments to the underlying physical simulation setup. Figure 5-

11 shows how different values of 𝑑𝑙𝑒𝑎𝑑 influence the operating envelope for the small

UUV. These operating envelopes are for UUVs at the same speed as the submarine

at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) and no waves, just like figure 5-10.
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(a) Small UUV operating envelope with 𝑑𝑙𝑒𝑎𝑑 = 𝐿𝑈𝑈𝑉

(b) Small UUV Operating Envelope with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉

(c) Small UUV Operating Envelope with 𝑑𝑙𝑒𝑎𝑑 = 5𝐿𝑈𝑈𝑉

Figure 5-11: Impact of 𝑑𝑙𝑒𝑎𝑑 on the operating envelopes for the small UUV traveling
at the same speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with no waves. A
smaller 𝑑𝑙𝑒𝑎𝑑 results in a larger safe operating envelopes.

As the 𝑑𝑙𝑒𝑎𝑑 decreases, the unsafe regions around the submarine decrease in size.

Placing the lead point closer to the UUV allows the UUV to more aggressively pursue

the track-line, perform better against the hydrodynamic interactions, and expand the

safe operating region. This trend also exists for medium and large UUVs. However,

the unsafe regions are still large enough to present problems with launch and recovery

operations especially if overtaking maneuvers are involved. Adjusting 𝑑𝑙𝑒𝑎𝑑 alone is

not enough to overcome the hydrodynamic interactions.

5.11.3 Effects of Waves

Determining the robustness of the UUV against perturbations is important to the

investigation of the UUV maneuvering capability during launch and recovery. Ocean
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waves provide the most applicable means of large perturbations experienced by the

UUV. These perturbations caused by ocean waves are incorporated into the UUV

motion simulator. In order to be conservative, these perturbations are assumed to be

in the worse case direction that pushes the UUV toward or away from the submarine,

rather than in an orthogonal direction. These perturbations also vary in magnitude

based on the sea state and operating depth of the UUV. The following figure shows

how the operating envelopes of the different size UUVs are affected by the ocean

waves. The waves are sea state 6 and the UUV operating depth is 50 meters. The

lead distance is 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 just like figure 5-10.

(a) Small UUV operating envelope in sea state 6 at 50 meters deep.

(b) Medium UUV operating envelope in sea state 6 at 50 meters deep.

(c) Large UUV operating envelope in sea state 6 at 50 meters deep.

Figure 5-12: Operating envelopes for different size UUVs in sea state 6 at a depth of
50 meters.

When compared to the no-wave condition in figure 5-10, the operating envelope at sea

state 6 at 50 meters is drastically reduced. For the small UUV, the operating region

that results in a collision with the submarine is very large and entirely encompasses

168



the submarine. This drastically reduces the chance of a successful launch or recovery

operation. The medium UUV also has an increase in the size of the collision regions

around the submarine, but the remainder of the area results in large strays. This

means that the medium UUV may not collide with the submarine but will stray by

more than one meter from the track-line due to the waves. The large UUV has a

reduction of the safe operating region compared to figure 5-10, but is much more ro-

bust to the wave perturbations than the smaller UUVs. This is a good demonstration

of the square-cube law. Fortunately, sea states of 6 or above occur less than 27% of

the time, and vessels try to avoid such rough seas so this case represents a relatively

strong perturbation [82]. Additionally, 50 meters in depth is likely near the minimum

depth at which launch and recovery operations will take place in order to maintain

vertical separation from surface vessels [68]. However, UUV launch and recovery can

be performed at deeper depths based on the maximum depth of the UUV in order to

reduce the impact of the waves. The Remus 100 has a maximum rated depth of 100

meters so operating below this is unfeasible. The following figure illustrates the same

sea state 6 and other parameters as figure 5-12, but the UUV is now operating at a

depth of 90 meters.
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(a) Small UUV operating envelope in sea state 6 at 90 meters deep.

(b) Medium UUV operating envelope in sea state 6 at 90 meters deep.

(c) Large UUV operating envelope in sea state 6 at 90 meters deep.

Figure 5-13: Operating envelopes for different size UUVs in sea state 6 at a depth of
90 meters.

Figure 5-13 shows a large increase in the safe operating regions for the small and

medium size UUV compared to figure 5-12. By operating 40 meters deeper, the

waves have much less of an impact on the UUV motion and make the chances of

successful launch or recovery much more likely.

At lower sea states, the vehicles are much more capable of overcoming the pertur-

bations due to the ocean waves. Even at sea state 5 with a depth of 50 meters, the

operating envelopes of the UUVs are much better than those at sea state 6. Figure

5-14 shows the operating envelopes for the different size UUVs at sea state 5 and 50

meters deep.
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(a) Small UUV operating envelope in sea state 5 at 50 meters deep.

(b) Medium UUV operating envelope in sea state 5 at 50 meters deep.

(c) Large UUV operating envelope in sea state 5 at 50 meters deep.

Figure 5-14: Operating envelopes for different size UUVs in sea state 5 at a depth of
50 meters.

These operating envelopes look much more like the case with no waves in figure 5-10

than the case in sea state 6 at 50 meters deep, especially for the small and medium

UUVs. The UUVs are much more capable of overcoming these perturbations than

those of sea state 6 at 50 meters. The ocean waves are at sea state 5 or lower more

than 73% of the time.

Overall, the UUV autonomous behaviors and control system are relatively robust

to ocean waves. At the minimum likely operating depth for launch and recovery

operations in sea state 5, the UUVs have similar operating envelopes as those with

no waves. Once sea state 6 is reached, the small and medium UUV experience large

strays or collisions, but this can be drastically mitigated by operating at lower depths

where the impacts of the waves decay away.
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5.12 Conclusion

Determining the hydrodynamic interaction forces and moments between a UUV and

submarine in real time is essential to simulate UUV motion during launch and recov-

ery operations. Simplified potential flow simulators can be solved very quickly, but fail

to capture the accurate physics of CFD simulations, which are too computationally

expensive to be solved in real-time. A GP regression surrogate model is developed

that is capable of predicting the UUV and submarine hydrodynamic interactions in

real time. A method of incorporating a GP surrogate model into a UUV motion

simulator is developed in order to simulate the impact of the hydrodynamic inter-

actions between the two vehicles. This enables the use and evaluation of the UUV

autonomous behavior and control system against the hydrodynamic interactions. Be-

cause this can be simulated rapidly, this allows for the creation of safe operating

envelopes in which the UUV is capable of overcoming the hydrodynamic interactions.

Because to its low computational cost and high simulation speed, this simulation ap-

proach may also be further leveraged to develop new UUV autonomous behaviors that

incorporate the GP surrogate model and become capable of overcoming the adverse

predicted hydrodynamic interactions.

The simulations of how the hydrodynamic interactions impact the UUV motion show

that there are regions near the bow and stern of the submarine just beyond the

parallel mid-body section that result in either a large straying from the track-line or

in collisions between the two vehicles. These unsafe operating regions extend laterally

from the bow and stern of the submarine so certain overtaking maneuvers may not be

feasible with standard UUV autonomous behaviors. Also, lateral approaches prove

problematic to standard UUV autonomous behaviors because they do not account

for the moving inertial frame of the submarine so the UUV has large strays from

the track-line. While waves provide perturbations that have the potential to be

problematic, it is not until sea state 6 at the minimum likely depth of 50 meters deep

that these perturbations have a significant impact on the safe operating envelopes of
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the vehicles. Sea states of 5 or lower have little impact on the operating envelope at

this depth. Also, at sea state 6, operating deeper around 90 meters causes the UUV

to experience significantly less impact from the waves so the safe operating envelope

is comparable to that of lower sea states.
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Chapter 6

Developing Autonomous Behaviors to

Overcome Hydrodynamic

Interactions

6.1 Introduction

In chapter 4, a GP surrogate model is created that predicts the hydrodynamic inter-

actions between a UUV and a moving submarine. In chapter 5, this GP surrogate

model is integrated into the equations of motion of a UUV simulator in order to

determine how these hydrodynamic interactions impact the motion of the UUV as

it maneuvers around the submarine. This UUV simulator is used to develop safe

operating envelopes around the submarine. There are regions around the submarine

in which the existing UUV autonomous behaviors and control system are capable

of overcoming the hydrodynamic interactions. However, these safe operating regions

are restrictive, especially in overtaking maneuvers where the UUV is near the bow or

stern of the submarine.

In an attempt to expand the safe operating region around the submarine, the GP
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surrogate model can also be integrated into the autonomous behaviors of the UUV

and not just the equations of motion. Because the GP surrogate can resolve the hy-

drodynamic interactions in real-time, the UUV can determine the forces and moments

fast enough to allow the control system to account for these unwanted forces and mo-

ments. The UUV can be enabled to determine new a new desired heading or speed

that compensates for the hydrodynamic interactions. By using the GP surrogate to

anticipate the unwanted hydrodynamic interactions, new autonomous behaviors may

be developed that are better at overcoming these hydrodynamic interactions and stay-

ing on course. These new behaviors have the potential to expand the safe operating

regions around the submarine and better enable the launch and recovery of UUVs

from submarines.

6.2 Approach

Section 5.5 and figure 5-3 show how the GP surrogate of the hydrodynamic interac-

tions is integrated into the UUV autonomy and control architecture. To review, the

hydrodynamic interactions GP surrogate was only incorporated into the equations

of motion and not into the autonomous behaviors. This approach taken in section

5.5 allows the simulation of how the UUV responds to these hydrodynamic interac-

tions. In order for the UUV to anticipate the unwanted hydrodynamic interactions,

the GP surrogate model needs to be embedded into the autonomous behaviors to

allow the UUV to adjust its desired course and speed based on these hydrodynamic

interactions. This enables the development of new autonomous behaviors capable of

better overcoming these unwanted hydrodynamic interactions. Building off of figure

5-3, figure 6-1 shows how the GP surrogate model of the hydrodynamic interactions is

integrated into the autonomous behavior pHelmIvP app of the MOOS-IvP simulation

architecture.
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Figure 6-1: Integration of the hydrodynamic interactions GP surrogate into the au-
tonomous behaviors of the MOOS-IvP architecture. The GP surrogate is also embed-
ded in the pHelmIvP app to enable the development of new autonomous behaviors
capable of better overcoming unwanted hydrodynamic interactions.

6.3 Autonomous Behaviors

6.3.1 𝑁𝑢𝑣 Compensating Behavior

The GP regression surrogate model is capable of determining the hydrodynamic in-

teraction forces and moments in real time. This real-time modeling enables the hy-

drodynamic interactions to be incorporated into the equations of motion to determine

how a UUV responds to these unwanted forces and moments. Additionally, this real-

time modeling capability can be incorporated into the autonomous behaviors of the

UUVs. If the UUV can anticipate the unwanted hydrodynamic forces and moments,

new autonomous behaviors may be developed that determine a new desired heading

and speed capable of better overcoming the hydrodynamic interactions and staying

on course.

Figure 5-5 shows how the UUV is not responsive enough to overcome the hydrody-

namic interactions between the submarine and UUV, which results in a collision. The

UUV is inherently reactive because it only begins to course correct after it is pulled
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away from the track-line. By the time the UUV begins to stray significantly from the

track-line, the standard waypoints behavior and UUV control system do not produce

a strong enough response to prevent a collision. Rather than being reactive to the

hydrodynamic interactions, the autonomous behavior can be altered to be proactive.

Because the surrogate model is capable of predicting the hydrodynamic interaction

forces and moments based on the current state of the UUV, the forces and moments

can be anticipated before waiting for the UUV to stray off course and then try to

recover.

In order to allow the UUV to anticipate hydrodynamic interactions, the GP surrogate

model is integrated into the pHelmIvP app, as shown in figure 6-1. This app simulates

the autonomous behavior of the UUV and is responsible for computing its desired

speed and heading. The GP surrogate model computes the predicted hydrodynamic

interaction surge, sway, and yaw forces and moments on the vehicle based on its

current state. If the UUV knows what hydrodynamic interaction forces and moments

it will experience, it can adjust its desired speed and/or heading appropriately in

order to stay on course. This enables the desired heading or desired speed to take

into account the predicted impact of these forces and moments and keep the UUV on

course.

Because there are multiple hydrodynamic interaction forces and moments acting on

the UUV, there is no single UUV state that can offset all of the surge, sway, and yaw

forces and moments at the same time. Additionally, there are multiple ways in which

the GP surrogate could be used to develop an autonomous behavior for the UUV.

By exploring which of these forces or moments has the largest impact on the ability

of the UUV to stay the course, the surge force is consistently the least influential

force and the yaw moment has the largest influence. After exploring many different

potential autonomous behaviors, the best case for which the UUV could overcome

the hydrodynamic interactions and stay on course is by adjusting the desired heading

to offset the hydrodynamic interaction yaw moment. The scheme by which this offset

is determined will be referred to as 𝑁𝑢𝑣 compensation. This scheme is founded on
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the concept of the munk moment. The munk moment is a destabilizing moment

experienced by a UUV in steady translation. When the flow is at a slight angle from

the forward direction of the vehicle, this results in a munk moment [14, 15]. This

moment is destabilizing because the resulting munk moment will cause the UUV to

want to rotate away from being parallel with the flow. This destabilizing moment

usually means that a long slender object, like a UUV, is only stable when moving

with its broadside to the flow. As such, the control surfaces are necessary to keep a

UUV directionally stable.

The idea behind 𝑁𝑢𝑣 compensation is to place the UUV in such a desired state that

the yaw moment of the UUV in this state offsets the hydrodynamic interaction yaw

moment predicted by the GP model 𝑁𝑠 at this location near the submarine. This

means that a new compensated desired heading needs to be determined. This is found

by using the 𝑁𝑢𝑣 coefficient of the UUV to solve for a compensated desired heading

angle 𝜓𝑑,𝑐𝑜𝑚𝑝. This is achieved by first solving for a theoretical compensated sway

velocity 𝑣𝑐𝑜𝑚𝑝 and then determining the theoretical heading angle that would produce

this sway velocity. The derivation of this compensated desired heading angle is as

follows

𝛾𝑁𝑠 = 𝑁𝑢𝑣𝑢𝑑𝑣𝑐𝑜𝑚𝑝

∴ 𝑣𝑐𝑜𝑚𝑝 =
𝛾𝑁𝑠

𝑁𝑢𝑣𝑢𝑑

∆𝜓 = tan−1

(︂
𝑢𝑑
𝑣𝑐𝑜𝑚𝑝

)︂
= tan−1

(︂
𝛾𝑁𝑠

𝑁𝑢𝑣𝑢2𝑑

)︂
𝜓𝑑,𝑐𝑜𝑚𝑝 = 𝜓𝑑 +∆𝜓

(6.1)

where 𝛾 is a factor that can be tuned as necessary and the desired speed 𝑢𝑑 and desired

heading 𝜓𝑑 are the outputs from the standard waypoints behavior of the pHelmIvP

app. Figure 6-2 is the same simulation setup as figure 5-5 and shows a comparison

of the standard waypoints behavior and a UUV that is using 𝑁𝑢𝑣 compensation with
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𝛾 = 1.

(a) Standard Waypoints Behavior: The
large UUV using the standard waypoints
behavior is unable to overcome the hydro-
dynamic interactions near the stern of the
submarine. This results in a collision.

(b) 𝑁𝑢𝑣 Compensating Behavior: Due to
the 𝑁𝑢𝑣 compensation, the large UUV is
now able to anticipate and overcome the
hydrodynamic interactions near the stern
of the submarine and avoid the impend-
ing collision.

Figure 6-2: Comparison of standard waypoint behavior and the 𝑁𝑢𝑣 compensating
behavior of a large UUV performing a simple overtaking maneuver near the stern of
the submarine with an overtaking velocity of 𝑈𝑜𝑡 = 0.25 m/s and a submarine velocity
of 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots). The standard waypoints behavior results in a collision
while the 𝑁𝑢𝑣 compensating behavior results in success.

By using 𝑁𝑢𝑣 compensation, the UUV adjusts the desired heading to be rotated

farther away from the submarine. This new heading overcomes the hydrodynamic

interaction that wants to rotate the bow of the UUV toward the submarine. Because

𝑁𝑢𝑣 compensation anticipates this hydrodynamic interaction, the UUV is able to

overcome it and avoid the impending collision. Rather than waiting for the UUV

to drift off course and then trying to course correct, the 𝑁𝑢𝑣 compensating behavior

changes the desired heading so that the yawing moment at that desired heading offsets

the yaw moment of the hydrodynamic interaction. This allows the UUV to begin to

adjust its course much earlier and ultimately successfully stay on course.
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6.3.2 Modified Waypoints Behavior

The standard waypoints behavior establishes the inertial reference frame as an earth-

fixed coordinate system. However, in order to study the hydrodynamic interactions

between a submarine and UUV, the inertial reference frame is fixed to the center of

buoyancy of the submarine. Because the submarine is constantly moving to maintain

flow across the control surfaces in order to stay in control, the waypoints are not fixed

to the earth and have significant flow through them. This submarine velocity 𝑈𝑠𝑢𝑏

has a significant impact on the UUV as it tries to navigate to a waypoint. This is

analogous to having an earth-fixed waypoint with a strong current passing through

it. The standard waypoint behavior is not designed to handle a significant current

passing through the waypoints. In the event that the track-line is parallel to 𝑈𝑠𝑢𝑏, like

in an overtaking maneuver, the standard waypoint behavior performs well. However,

when there is flow that crosses the track-line, the UUV is taken way off course.

Figure 6-3 illustrates how a UUV behaves near a submarine moving forward. The

blue line is the track-line between waypoints while the red line tracks the position

of the UUV over time. Initially, the UUV is traveling parallel to the submarine. As

the UUV desires to head down along the vertical track-line, it changes its heading to

a maximum of about 60 degrees toward the submarine to advance toward the next

waypoint. When the UUV is at this heading, the large cross-flow causes the UUV to

get pushed significantly off of the track-line. When the track-line is parallel to 𝑈𝑠𝑢𝑏,

the UUV is able to stay on the track-line.
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Figure 6-3: Demonstration of the standard waypoints behavior with a moving sub-
marine. The large cross flow pushes the UUV off course when not moving parallel to
the submarine.

This problem is addressed by creating a modified waypoint behavior. The modified

waypoint behavior adjusts the position of the lead point based on the submarine

speed. This can also be thought of in an earth-fixed coordinate system as adjusting

the lead point based on a known constant current through the waypoints. Rather than

place the lead point on the track-line at 𝑑𝑙𝑒𝑎𝑑 from the perpendicular intersection point,

a new position is calculated for the lead point. This location is calculated by moving

the lead point by 𝑑𝑙𝑒𝑎𝑑 from the perpendicular intersection point in the direction of

𝑈𝑠𝑢𝑏. Additionally, the lead point is moved in the direction perpendicular to 𝑈𝑠𝑢𝑏

towards the next waypoint by a distance known as the lead offset 𝑑𝑜𝑓𝑓 . Figure 6-4

shows how the lead point is determined. The angle between 𝑈𝑠𝑢𝑏 and the track-line

is denoted as 𝛽.
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Figure 6-4: Modified Waypoints Behavior: The position of the lead point is changed
from the standard waypoint behavior. This enables the UUV to stay on the track-line
despite having a large cross flow that overwhelms the standard waypoint behavior.

This lead offset 𝑑𝑜𝑓𝑓 is determined using equation (6.2).

𝑑𝑜𝑓𝑓 =
𝛼𝑑𝑙𝑒𝑎𝑑𝑈𝑜𝑡 sin (𝛽)

𝑈𝑠𝑢𝑏
(6.2)

where 𝛼 is a parameter between zero and one that specifies how quickly the UUV

transverses the track-line in the direction perpendicular to the cross flow. Also,

recall that the relative speed between the UUV and submarine is denoted as 𝑈𝑜𝑡 =

𝑈𝑈𝑈𝑉 − 𝑈𝑠𝑢𝑏.

While modifying the position of the lead point appropriately adjusts the desired

heading, it does not account for the desired speed of the UUV and fails to allow the

UUV to accelerate or decelerate to follow the track-line. This ability is added by

developing a speed policy behavior for the UUV where the speed policy correction

factor is denoted as 𝜀 in equation (6.3).

𝑈𝑈𝑈𝑉 = 𝑈𝑠𝑢𝑏 + 𝑈𝑜𝑡 cos (𝛽) + 𝜀 (6.3)

If the UUV lags behind the track-line in the direction of 𝑈𝑠𝑢𝑏, then the 𝑈𝑈𝑈𝑉 increases.
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If the UUV leads the track-line, 𝑈𝑈𝑈𝑉 decreases. The amount by which the 𝑈𝑈𝑈𝑉 is

adjusted is the speed policy correction factor 𝜀, which is outlined in equation (6.3).

The 𝜀 is established according to the 𝑈𝑜𝑡, the length of the UUV 𝐿𝑈𝑈𝑉 , and the

distance between the UUV and the perpendicular intersection point 𝑑𝑝𝑒𝑟𝑝. The policy

is analogous to a saturated proportional gain and is set such that the maximum 𝜀 is

achieved when the UUV lags the track-line in the direction of 𝑈𝑠𝑢𝑏 by a distance of

𝐿𝑈𝑈𝑉 . Figure 6-5 shows this non-dimensionalized speed policy correction factor.

Figure 6-5: Speed Policy: This policy shown in non-dimensional terms allows the
UUV to accelerate or decelerate when the cross flow causes the UUV to fall behind
or overshoot the track-line.

In order to compare the standard and the modified waypoints behavior, a test simu-

lation is conducted for a small UUV, i.e. the REMUS 100. The course is to maneuver

around a series of octagonally arranged waypoints with a 𝑈𝑠𝑢𝑏 of 1.5 m/s (≈3 knots),

𝑈𝑜𝑡 of 0.25 m/s, and 𝛼 of 1. Figure 6-6 shows a comparison of the standard and

modified waypoints behavior.
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(a) Standard Waypoints Behavior: This
behavior is not resistant to the cross flow.
This causes the UUV to be pushed off
course and even get turned around.

(b) Modified Waypoints Behavior: This
behavior is resistant to the cross flow,
even at all of the different course trajec-
tories.

Figure 6-6: Comparison of standard and modified waypoints behavior. Unlike the
standard waypoints behavior, the modified waypoint behavior enables the UUV to
stay on course across all course trajectories despite the large cross flow.

The standard waypoints behavior is significantly affected by the cross-flow. The

simulation using the standard waypoints behavior even resulted in the UUV missing

one of the waypoints and having to circle back and get it. However, the modified

waypoints behavior shows how the UUV is able to account for the cross flow and

stay on its track-line. The UUV only needs to orient between ±10 degrees in order

to utilize the cross flow to move laterally. This approach prevents the UUV from

experiencing the large strays seen by the standard waypoints behavior.

6.4 Results

6.4.1 Results for 𝑁𝑢𝑣 Compensating Behavior

As discussed previously, 𝑁𝑢𝑣 compensation is a method by which the GP surrogate

model of the hydrodynamic interactions is used to influence the UUV autonomous

behavior by determining a new heading angle 𝜓𝑑,𝑐𝑜𝑚𝑝 that compensates for the hydro-

dynamic interactions. Figure 6-2 provide an example of how this 𝑁𝑢𝑣 compensation
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is able to allow the UUV to account for and overcome the hydrodynamic interactions.

This results in the UUV staying on track and avoiding the impending collision with

the submarine.

This approach also enables the 𝑁𝑢𝑣 compensation to be simulated very rapidly for

UUVs at various locations around the submarine, which allows for the development of

new operating envelopes. Figure 6-7 represents the new 𝑁𝑢𝑣 compensated operating

envelopes. These are for UUVs at the same speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s

(≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 and no waves, just like figure 5-10.

(a) Small UUV operating envelope with-
out 𝑁𝑢𝑣 compensation

(b) Small UUV operating envelope with
𝑁𝑢𝑣 compensation

(c) Medium UUV operating envelope
without 𝑁𝑢𝑣 compensation

(d) Medium UUV operating envelope
with 𝑁𝑢𝑣 compensation

(e) Large UUV operating envelope with-
out 𝑁𝑢𝑣 compensation

(f) Large UUV operating envelope with
𝑁𝑢𝑣 compensation

Figure 6-7: Operating envelopes for the small, medium, and large UUVs with and
without 𝑁𝑢𝑣 compensation. The UUVs are traveling at the same speed as the sub-
marine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 and no waves. The 𝑁𝑢𝑣

compensation increases the safe operating region around the submarine.

The use of 𝑁𝑢𝑣 compensation drastically reduces the collision and large stray regions

for the UUVs. This 𝑁𝑢𝑣 compensation also provides a significant increase to the size

of the safe operating regions compared to changing the 𝑑𝑙𝑒𝑎𝑑. This demonstrates the

effectiveness of the 𝑁𝑢𝑣 compensation to anticipate the hydrodynamic interactions
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and to appropriately adjust the desired heading angle. The 𝑁𝑢𝑣 compensation out-

lined in equation (6.1) is especially beneficial for the medium and large UUVs. This is

largely because of the square-cube law. This law states that the forces and moments

experienced by the UUVs increase in proportion to the surface area, or square of the

characteristic length. However, the mass and inertial properties of the UUV increase

in proportion to the volume, or the cube of the characteristic length. As such, as a

UUV becomes larger, its inertial properties increase faster than the forces and mo-

ments it experiences, so the vehicle is more resistant to accelerations. Also, there is

no single UUV heading and speed that can balance all of the different hydrodynamic

interactions acting on the vehicle. As such, the small UUV experiences larger de-

viations from its course due to the other uncompensated hydrodynamic interactions

when compared to the larger UUVs. Larger UUVs have enough inertia to be resistant

to these uncompensated forces.

In equation (6.1), the 𝛾 parameter is present to allow for the tuning of the 𝑁𝑢𝑣

compensation. If the moment from the 𝑁𝑢𝑣 exactly offsets the moment predicted by

the GP surrogate 𝑁𝑠, then 𝛾 = 1. For the medium and large UUVs, 𝛾 = 1 works very

well. However, for the small UUV with smaller inertial properties, this value is too

low. The new compensated heading angle is not aggressive enough to overcome the

hydrodynamic interactions. However, by selecting a 𝛾 that is too large, the UUV is

too aggressive and overcorrects from the hydrodynamic interactions. The following

figure illustrates the impact of 𝛾 on the compensated operating envelope of the small

UUV.
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(a) 𝑁𝑢𝑣 compensation for small UUV with 𝛾 = 1

(b) 𝑁𝑢𝑣 compensation for small UUV with 𝛾 = 5

(c) 𝑁𝑢𝑣 compensation for small UUV with 𝛾 = 10

Figure 6-8: Impact of 𝛾 on the 𝑁𝑢𝑣 compensated operating envelopes for a small
UUV that is traveling at the same speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3
knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 and no waves. The 𝛾 parameter can cause the UUV to
undercorrect and overcorrect for the hydrodynamic interactions.

Figure 6-8 shows how the 𝑁𝑢𝑣 compensated small UUV with 𝛾 = 1 has a smaller

safe operating region than when 𝛾 = 5. However, when the parameter is increased

to 𝛾 = 10, the vehicle overcorrects which reduces the safe operating envelope of the

vehicle. As such, there is a 𝛾 for each vehicle which maximizes the size of the safe

operating envelope.

Due to the square-cube law, the medium and large UUVs perform much better when

the yaw moment from the hydrodynamic interaction surrogate 𝑁𝑠 equals the yaw

moment from the 𝑁𝑢𝑣 coefficient. This means that the 𝛾 values for these vehicles

are much closer to one. The final values identified for 𝛾 for the small, medium, and

large UUVs respectively are 5.22, 1.30, and 1.03. An empirical equation is developed

to predict the 𝛾 parameter based on the combined mass and added mass M11 of the
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UUV moving in the forward direction. This is the term in the first row and column of

the inertial matrix M in equations (5.10) and (5.20). The values of M11 for the small,

medium, and large UUVs are 33.6 kg, 212.9 kg, and 6020 kg respectively. Equation

(6.4) provides a means of determining 𝛾 based on the M11 term of the UUV.

𝛾(𝑀11) = 104.538(log10(M11))
−4.364

(6.4)

Because these values of 𝛾 provided the largest safe regions in the operating envelopes,

they are used as the default values throughout this study. This includes the operating

envelopes in figure 6-7.

6.4.2 Effects of Waves

Determining the robustness of the UUV against perturbations is important to the

investigation of the UUV maneuvering capability during launch and recovery. Ocean

waves provide the most applicable means of large perturbations experienced by the

UUV. These perturbations caused by ocean waves are incorporated into the UUV

motion simulator as discussed in section 5.8. In order to be conservative, these per-

turbations are assumed to be in the worse case direction that pushes the UUV toward

or away from the submarine, rather than in an orthogonal direction. These pertur-

bations also vary in magnitude based on the sea state and operating depth of the

UUV. The following figure shows how the operating envelopes of the different size

UUVs with and without 𝑁𝑢𝑣 compensation are affected by the ocean waves. The

waves are sea state 5 and the UUV operating depth is 50 meters with a lead distance

of 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 .
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(a) Small UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 5 at
50 meters deep.

(b) Small UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 5 at 50
meters deep.

(c) Medium UUV operating envelope
without 𝑁𝑢𝑣 compensation in sea state
5 at 50 meters deep.

(d) Medium UUV operating envelope
with 𝑁𝑢𝑣 compensation in sea state 5 at
50 meters deep.

(e) Large UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 5 at
50 meters deep.

(f) Large UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 5 at 50
meters deep.

Figure 6-9: Operating envelopes for different size UUVs with and without 𝑁𝑢𝑣 com-
pensation in sea state 5 at a depth of 50 meters. The UUVs are traveling at the same
speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 . Providing
𝑁𝑢𝑣 compensation increases the size of the safe operating envelope.

Figure 6-9 shows how using the 𝑁𝑢𝑣 compensating behavior dramatically increases

the safe operating envelope for the medium and large UUV. However, due to the

square-cube law, the small UUV is not able to overcome the perturbations and hy-

drodynamic interactions as easily, so the improvements on the safe operating envelope

are minimal.

Figure 6-10 provides another scenario of different size UUVs at sea state 6 with the

UUV operating depth is 90 meters with a lead distance of 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 . This figure

compares the safe operating envelopes for UUVs with and without 𝑁𝑢𝑣 compensa-

tion.
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(a) Small UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 6 at
90 meters deep.

(b) Small UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 6 at 90
meters deep.

(c) Medium UUV operating envelope
without 𝑁𝑢𝑣 compensation in sea state
6 at 90 meters deep.

(d) Medium UUV operating envelope
with 𝑁𝑢𝑣 compensation in sea state 6 at
90 meters deep.

(e) Large UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 6 at
90 meters deep.

(f) Large UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 6 at 90
meters deep.

Figure 6-10: Operating envelopes for different size UUVs with and without 𝑁𝑢𝑣 com-
pensation in sea state 6 at a depth of 90 meters. The UUVs are traveling at the same
speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 . Providing
𝑁𝑢𝑣 compensation increases the size of the safe operating envelope.

By providing 𝑁𝑢𝑣 compensation, the safe operating envelopes are able to drastically

increase in size for the medium and large UUV. The 𝑁𝑢𝑣 compensation provides an

improvement in the operating envelope of the small UUV, but it still has regions near

the bow and stern of the submarine which result in a collision, similar to figures 6-7,

6-8, and 6-9. Again, this is due to the square-cube law.

There is a limit to the improvement that𝑁𝑢𝑣 compensation can provide. The following

figure compares the operating envelopes for UUVs with and without𝑁𝑢𝑣 compensation

at sea state 6, 50 meters deep, with a lead distance of 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 .
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(a) Small UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 6 at
50 meters deep.

(b) Small UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 6 at 50
meters deep.

(c) Medium UUV operating envelope
without 𝑁𝑢𝑣 compensation in sea state
6 at 50 meters deep.

(d) Medium UUV operating envelope
with 𝑁𝑢𝑣 compensation in sea state 6 at
50 meters deep.

(e) Large UUV operating envelope with-
out 𝑁𝑢𝑣 compensation in sea state 6 at
50 meters deep.

(f) Large UUV operating envelope with
𝑁𝑢𝑣 compensation in sea state 6 at 50
meters deep.

Figure 6-11: Operating envelopes for different size UUVs with and without 𝑁𝑢𝑣 com-
pensation in sea state 6 at a depth of 50 meters. The UUVs are traveling at the same
speed as the submarine at 𝑈𝑠𝑢𝑏 = 1.5 m/s (≈3 knots) with 𝑑𝑙𝑒𝑎𝑑 = 3𝐿𝑈𝑈𝑉 . Providing
𝑁𝑢𝑣 compensation improved the operating envelope for the large UUV, but not the
small and medium.

Figure 6-11 shows that the 𝑁𝑢𝑣 compensated small and medium UUVs have little

to no improvement for their operating envelopes. At sea state 6 and 50 meters

deep, the perturbations are too large to allow a safe operating region, even with 𝑁𝑢𝑣

compensation. The 𝑁𝑢𝑣 behavior does provide some improvement to the large UUV

because the unsafe operating regions are caused by the hydrodynamic interactions

rather than the wave perturbations.

In summary, there are two forces that reduce the safe operating regions of the UUV

around the submarine. These are the wave perturbations and the hydrodynamic in-

teraction. The 𝑁𝑢𝑣 compensating behavior does well at overcoming the hydrodynamic

interactions and maintains the same robustness against the perturbations of the ocean

waves inherent in the UUV control system. As discussed in section 5.11.3, in sea state

5 at 50 meters deep, the UUVs have similar operating envelopes as the no wave con-
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dition. However, at higher sea states or shallower depths, the UUVs may experience

large increases in the size of the regions where large strays or collisions occur. The

𝑁𝑢𝑣 compensation provides little improvement to the operating envelopes in these

conditions because the effects of the wave perturbations dominate the hydrodynamic

interactions.

6.5 Conclusions

A GP surrogate model of the hydrodynamic interaction forces and moments between

a UUV and a submarine is used to simulate UUV motion during launch and recovery

operations. A method is developed to incorporate this GP surrogate model of the

hydrodynamic interactions into the autonomous behaviors of the UUV. This enables

the UUV autonomous behaviors to anticipate the hydrodynamic interactions and

appropriately adjust the desired heading and speed.

As discussed in section 5.12, there are regions near the bow and stern of the sub-

marine that result in large strays from the track-line or collisions between the two

vehicles. Also, lateral approaches prove problematic to standard UUV autonomous

behaviors because they do not account for the moving inertial frame of the submarine.

This means that the standard waypoints behavior causes the UUV to experience large

strays from the track-line when there are strong cross-flows. In order to account for

these two problems, two separate UUV autonomous behaviors are developed. The

first is known as 𝑁𝑢𝑣 compensation. This behavior adjusts the desired heading so that

the hydrodynamic interaction yaw moment 𝑁𝑠 offsets the moment caused by the in-

cident flow. This 𝑁𝑢𝑣 compensating behavior is shown to allow the UUV to overcome

the hydrodynamic interactions well beyond the capability of the standard waypoints

behavior. The second behavior is known as the modified waypoints behavior. This

behavior accounts for the fact that the inertial reference frame is fixed to a moving

submarine as opposed to an earth-fixed reference frame like the standard waypoints

behavior. This modified waypoints behavior enables the UUV to stay on course, even

when there is a large flow that crosses the UUV track line. These new behaviors
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increase the safe operating envelopes during launch and recovery operations.
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Chapter 7

Conclusion

7.1 Summary

The objective of this study is to develop a methodology for simulating UUV maneu-

vering around a moving submarine by accurately predicting the complex hydrody-

namic interactions in real time using actively sampled Gaussian Process regression as

a surrogate model. A Non-Myopic Multi-Fidelity active sampling method has been

developed that utilizes the low cost of a low fidelity potential flow model to explore

the design space while leveraging the high accuracy of a high fidelity CFD simula-

tor to create a surrogate model. The new approach outperforms other benchmark

methods and improves the efficiency of computing reduced order models due to its

non-myopic active search properties. This method is also generalizable to actively

sample data points across other problems using a multi-fidelity framework.

This GP regression surrogate enables the real-time prediction of the UUV hydrody-

namic interactions based on the accurate CFD training data. Real-time modeling of

these hydrodynamic interactions is essential to simulate UUV autonomy and control

around moving submarines. Using CFD to computationally model the hydrodynamic

interactions between a submarine and UUV is an approach that has been validated

by tow tank experiments. Although the CFD setup has been validated, it is still too
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computationally expensive to be evaluated in real time in order to be incorporated

into a UUV maneuvering simulator. Other hydrodynamic approaches like potential

flow or the "one-way" assumption are fast enough to be evaluated in real time, but

lack the necessary accuracy of CFD. The GP regression surrogate bridges this gap

between speed and accuracy by using the actively sampled CFD data as training data

to predict the hydrodynamic interactions in real time. This enables the simulation of

UUV maneuvering around moving submarines.

A method of incorporating a GP surrogate model into the equations of motion of a

UUV motion simulator is developed in order to evaluate the impact of the hydrody-

namic interactions between the two vehicles. This enables the evaluation of the UUV

autonomous behavior and control system against the hydrodynamic interactions. Be-

cause this can be simulated rapidly, this allows for the creation of safe operating

envelopes in which the UUV is capable of overcoming the hydrodynamic interactions.

The simulations of how the hydrodynamic interactions impact the UUV motion show

that there are regions near the bow and stern of the submarine just beyond the par-

allel mid-body section that result in either a large straying from the track-line or in

collisions between the two vehicles. These unsafe operating regions extend laterally

from the bow and stern of the submarine so certain overtaking maneuvers may not be

feasible with standard UUV autonomous behaviors. Also, lateral approaches prove

problematic to standard UUV autonomous behaviors because they do not account

for the moving inertial frame of the submarine so the UUV has large strays from the

track-line. While waves provide perturbations that have the potential to be problem-

atic, it is not until sea state 6 at the minimum likely depth of 50 meters deep that

these perturbations have a significant impact on the safe operating envelopes of the

vehicles.

Additionally, a method is developed to incorporate this GP surrogate model of the

hydrodynamic interactions into the autonomous behaviors of the UUV. This enables

the UUV autonomous behaviors to anticipate the hydrodynamic interactions and

appropriately adjust the desired heading and speed in order to stay on course. Lateral
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approaches and regions near the bow and stern of the submarine are problematic for

current UUV autonomous behaviors. In order to account for these two problems,

two separate UUV autonomous behaviors are developed. The first is known as 𝑁𝑢𝑣

compensation which adjusts the desired heading so that the hydrodynamic interaction

yaw moment offsets the moment caused by the incident flow. This 𝑁𝑢𝑣 compensating

behavior is shown to allow the UUV to overcome the hydrodynamic interactions well

beyond the capability of the standard waypoints behavior in the bow and stern regions

near the submarine. The second behavior, known as the modified waypoints behavior,

accounts for the fact that the inertial reference frame is fixed to a moving submarine

as opposed to an earth-fixed reference frame like the standard waypoints behavior.

This modified waypoints behavior enables the UUV to stay on course during lateral

approaches. These new behaviors increase the safe operating envelopes during launch

and recovery operations and are just as robust to waves as existing behaviors.

7.2 Future Work

Future work for this research may include increasing the dimensionality of the input

space by considering more parameters, i.e. more complex and realistic setups. This

would require more complex and higher dimension surrogate models, and may even

require those based on neural networks or operators [83]. This additional complexity

could include introducing movable control surfaces on the UUV, modeling transient

UUV behavior, accounting for six degrees of freedom motion by allowing the axes of

the two vehicles to be non-planar, or simulating the hydrodynamic interactions near

a submarine appendage like the sail or a dry deck shelter. This added complexity

could also reduce the need for some of the assumptions made for this research. For

example, by modeling the UUV transient behavior, the quasi-static assumption could

be removed.

Additionally, the application of the non-myopic multi-fidelity sampling algorithm is

currently formulated for only two levels of fidelity. An extension to more levels of

fidelity is straightforward and may be beneficial for other CFD problems, like using
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variable-resolution CFD models. This is also left to be explored in future work.

More work could be performed in validating the UUV simulator with the incorpo-

rated hydrodynamic interactions surrogate. While the individual components have

been validated, there has been no system-level validation of the simulations because

there is no real-world data available for comparison. Collecting this data with real-

world UUVs and submarines would provide a means of validating the UUV simula-

tions.

This research also used generic hull forms for the submarine and UUV. While these

hull forms are generally applicable to UUVs and submarines, vehicles with slightly

different hull shapes will experience slightly different hydrodynamic interactions. This

research could be expanded to explore the viability of the L&R operations of specific

vehicles.

This study did not explore any UUV positions that are directly in front of or behind

the submarine due to the possibility of collisions and design space priority from project

sponsors. However, L&R of UUVs from torpedo tubes is also a real option so exploring

the hydrodynamic interactions in front of the bow of the submarine is valuable.
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Appendix A

Code Documentation

A.1 Overview

In order to perform the UUV motion simulation, a collection of Python code is devel-

oped which combines Gaussian Process Regression code built using the GPy library

and custom code that is modeled off of the MOOS-IvP architecture which is an open-

source C++ simulator for autonomous underwater vehicles. However, the MOOS-IvP

architecture uses a kinematic simulator so forces and moments are never used to de-

termine the UUV motion.

There are two possible system integration approaches to allow the python based

hydrodynamic interaction surrogate to be incorporated into the C++ UUV simulator.

The first is to create a new uSimMarine app that incorporates the equations of motion

in order to perform dynamic simulations, rather than kinematic simulations. The

surrogate is developed in python using robust open-source GPy libraries. Because the

surrogate is written in python, it would have to be embedded into C++ using a python

interpreter in order to be used by the new uSimMarine app and the pHelmIvp app

of the MOOS-IvP architecture. The second method is to create a separate dynamic

simulator in python. Next, the code and architecture of MOOS-IvP are leveraged

to convert the necessary components into python in order to be compatible with
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the surrogate. In either scenario, the dynamic simulator using the UUV equations

of motion needs to be developed because MOOS-IvP lacks this functionality. The

second approach is taken because it presented less integration risk.

This framework uses three different vectors to relay information between apps within

the simulator. These three different vectors are the state vector x, input vector u, and

desired state vector xd and are listed in equation (5.1) and repeated below for conve-

nience. The propeller thrust and torque are denoted as 𝑋𝑃𝑟𝑜𝑝 and 𝐾𝑃𝑟𝑜𝑝 respectively

while the rudder and stern plane angles are denoted as 𝛿𝑟 and 𝛿𝑠 respectively.

x = [𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟, 𝑥, 𝑦, 𝑧, 𝜑, 𝜃, 𝜓]𝑇

u = [𝑋𝑃𝑟𝑜𝑝, 𝐾𝑃𝑟𝑜𝑝, 𝛿𝑟, 𝛿𝑠]
𝑇

xd = [𝑢𝑑, ..., 𝜓𝑑]
𝑇

(A.1)

MOOS-IvP is an open-source C++ UUV simulator that uses three basic apps to

model the UUV control system and its impact on UUV motion. The pHelmIvP app

takes in the state vector of the vehicle position and motion and uses an autonomous

behavior to compute a new desired input vector containing the new desired speed

and heading. The autonomous behaviors may be the standard waypoints behavior,

modified waypoints behavior, ot it may use the surrogate to adjust the desired speed

and heading using the 𝑁𝑢𝑣 compensating behavior detailed in section 6.3.1. This

desired input vector is then passed to the pMarinePID app which simulates a PID

controller using equation (5.21) in order to determine the input vector of the propeller

thrust and torque, as well as the angle of the stern planes and rudder. This input

vector, as well as the state vector, is then passed to the uSimMarine app which updates

the vehicle state, position, and trajectory using the equations of motion. These

equations of motion incorporate the hydrodynamic interactions from the surrogate

model as outlined in equations (5.20). This creates a new state vector for the UUV.

The process is iterated continually throughout the simulation and simulations are
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iterated to create operating envelopes. Figure 5-2 shows an overview of the simulation

architecture.

Figure A-1: Integration of the hydrodynamic interactions surrogate into the MOOS-
IvP architecture. The GP surrogate is embedded in the pHelmIvP app to enable the
implementation of new autonomous behaviors as well as the uSimMarine app to allow
the surrogate to impact the equations of motion.

The code for this research is too long to be included in this appendix but may be

made available at the request of the author. Chapters 2, 4, 5, and 6 provide a

detailed description of all of the methods and equations used to create this UUV

simulator.
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